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Abstract 
 
A growing number of persons living beyond age 100 emphasize the need for 

accurate measurement and modeling of mortality at advanced ages.  However, mortality 
measurement at extremely old ages poses serious challenges to researchers: age 
reporting at extreme ages may be inaccurate; small number of persons at advanced 
ages requires pooling together data for people belonging to different birth cohorts, which 
results in data heterogeneity; finally, standard approach based on annual mortality 
estimates may not be appropriate for studies of mortality at extreme old ages when 
death rates are particularly high.  

The study uses data from the Social Security Administration Death Master File 
(DMF) to measure mortality in more homogeneous single-year birth cohorts and in 
narrow (monthly) age intervals. Mortality after age 88 was estimated for 1881-1895 
single-year extinct birth cohorts. Data quality control checks demonstrated that 
deceleration of mortality in later life is more expressed for data of lower quality. 
Additional quality checks using female-to-male ratio at advanced ages identified the age 
107 years as the upper limit for acceptable quality of age reporting.  Model comparison 
using Bayesian information criterion (BIC) found that the Gompertz model provides 
better fitting of hazard rates than the logistic model in the age interval 88-106 years and 
for data with reasonably good quality. Hazard rate estimates at old ages obtained on the 
basis of DMF data agree well with estimates calculated on the basis of 1900 actuarial 
cohort life table.  

Study of several single-year extinct U.S. birth cohorts found that mortality trajectory 
at advanced ages follows the Gompertz law up to the ages 106 years without significant 
mortality deceleration. Earlier reports of mortality deceleration for ages below 106 years 
appears to be a result of age exaggeration, use of improper estimates of hazard rate and 
perhaps data heterogeneity.  The phenomenon of mortality deceleration at older ages 
vanishes for datasets of higher quality. At the same time, our findings do not exclude 
possibility of mortality deceleration at later ages (after age 107 years).  
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1. Introduction 
Accurate estimates of mortality at advanced ages are essential for improving 

forecasts of mortality and predicting the population size of the oldest old age group.  It is 
believed that mortality at advanced ages has a tendency to deviate from the Gompertz 
law (Gavrilov and Gavrilova 1991), so that the logistic model is suggested for fitting 
human mortality after age 85 years (Horiuchi and Wilmoth 1998).  The estimates of 
mortality force at extreme ages are difficult because of small numbers of survivors to 
these ages in most countries.  Data for extremely long-lived individuals are scarce and 
subjected to age exaggeration.  Traditional demographic estimates of mortality based on 
period data encounter well known denominator problem.  More accurate estimates are 
obtained using the method of extinct generations (Vincent 1951).  In order to minimize 
statistical noise in estimates of mortality at advanced ages researches are forced to pool 
data for several calendar periods (Depoid 1973; Thatcher 1999).  Single-year life tables 
for many countries have very small numbers of survivors to age 100 that makes 
estimates of mortality at advanced ages unreliable. On the other hand, aggregation of 
deaths for several calendar periods creates a heterogeneous mixture of cases from 
different birth cohorts. Theoretical models suggest that mortality deceleration at 
advanced ages may be caused by population heterogeneity even if individual risk of 
death follows the Gompertz law (Beard 1959; Beard 1971; Vaupel, Manton and Stallard 
1979).  In addition to that, many standard assumptions used in hazard rate estimation 
are not valid for extreme old ages when mortality is particularly high.  

 
Thus the estimation of hazard rate at extremely old ages poses several serious 

challenges to researchers:  
(1) The observed mortality deceleration may be at least partially related to mixing 

different birth cohorts with different mortality (heterogeneity effect);  
(2) Standard assumptions of hazard rate estimates may be invalid when risk of 

death is extremely high at old ages;  
(3) Ages of very old people may be exaggerated. 
 
One way of obtaining estimates of mortality at extreme ages is to pool together 

international records of persons surviving to extreme ages with subsequent efforts of 
strict age validation (Robine et al. 2005; Robine and Vaupel 2001). This approach helps 
to resolve the third problem mentioned above but does not allow researchers to resolve 
the first two problems because of inevitable data heterogeneity when data for people 
belonging to different birth cohorts and countries are pooled together.  

 
In this paper we propose an alternative approach, which allows us to resolve partially 

these problems.  This approach is based on using data from the Social Security 
Administration Death Master File (DMF), which allows compiling data for large single-
year birth cohorts. Some already extinct birth cohorts covered by DMF could be studied 
by the method of extinct generations.  Availability of month of birth and month of death 
information provides a unique opportunity to obtain hazard rate estimates for every 
month of age. Possible ways of resolving the age exaggeration problem in hazard rate 
estimation are also elaborated. 
 

2. Mortality at Advanced Ages: A Historical Review 

The history of mortality studies at extreme ages is very rich in ideas and findings. 
Early studies starting with Gompertz (1825) himself suggested that the Gompertz law of 
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mortality is not applicable to extreme old ages, and that mortality deceleration and 
leveling-off takes place at advanced ages (for a thoughtful historical review of studies on 
mortality deceleration at extreme old ages, see Olshansky 1998). In 1939 two British 
researchers, Greenwood and Irwin, published an article “Biostatistics of Senility,” with an 
intriguing finding that mortality force stops increasing with age at extreme old ages and 
becomes constant (Greenwood and Irwin, 1939). This study, lead by the famous British 
statistician and epidemiologist, Major Greenwood, may be interesting to discuss here 
because it describes the mortality pattern at advanced ages for humans reported by 
researchers many years later (Depoid 1973; Gavrilov 1984; Horiuchi and Wilmoth 1998; 
Thatcher 1999; Thatcher, Kannisto and Vaupel 1998). 

The first important finding was formulated by Greenwood and Irwin in the 
following way: “…the increase of mortality rate with age advances at a slackening rate, 
that nearly all, perhaps all, methods of graduation of the type of Gompertz’s formula 
over-state senile mortality” (Greenwood and Irwin, 1939, p. 14). This observation was 
reported later by many authors (Depoid 1973; Gavrilov and Gavrilova 1991; Horiuchi and 
Wilmoth 1998; Thatcher 1999; Thatcher et al. 1998), and it is now known as the “late-life 
mortality deceleration.” 

The authors also suggested “the possibility that with advancing age the rate of 
mortality asymptotes to a finite value” (Greenwood and Irwin, 1939, p. 14). Their 
conclusion that mortality at exceptionally high ages follows a first order kinetics (also 
known as the law of radioactive decay with exponential decline in survival probabilities) 
was supported later by other researchers, including A.C. Economos (Economos 1979; 
Economos 1980), who reported that this law holds for humans and laboratory animals 
(linear decrease for the logarithm of the number of survivors). This observation is known 
now as the “mortality leveling-off” at advanced ages, and as the “late-life mortality 
plateau” (Curtsinger, Gavrilova and Gavrilov 2006).  

Moreover, Greenwood and Irwin made the first estimates for the asymptotic 
value of human mortality (one-year probability of death, qx) at extreme ages using data 
from the life insurance company. According to their estimates, “… the limiting values of  
qx  are 0.439 for women and 0.544 for men” (Greenwood and Irwin, 1939, p. 21). It is 
interesting that these first estimates are very close to estimates obtained later using 
more numerous and accurate human data including recent data on supercentenarians 
(Robine and Vaupel, 2001). The authors also suggested an explanation of this 
phenomenon. According to Greenwood and Irwin (1939), centenarians live in a more 
protected environment than younger age groups and hence have lower risk of death 
than predicted by the Gompertz formula.  

The actuaries including Gompertz himself were the first who noticed this 
phenomenon of mortality deceleration. They also proposed a logistic formula for fitting 
mortality growth with age in order to account for mortality leveling-off at advanced ages 
(Perks, 1932; Beard, 1959, 1971). British actuary, Robert Eric Beard, introduced a model 
of population heterogeneity with gamma distributed individual risk in order to explain 
mortality deceleration at older ages (Beard 1959). This explanation is now considered to 
be the most common explanation of mortality deceleration phenomenon (Horiuchi and 
Wilmoth 1998). 

The same phenomenon of  “almost non-aging” survival dynamics at extreme old 
ages is detected in many other biological species. In some species a mortality plateau 
can occupy a sizable part of their life (Carey et al. 1992; Gavrilov and Gavrilova 2006). 
Biologists were aware of mortality leveling-off since the 1960s. For example, Lindop 
(Lindop 1961) applied Perks formula in order to account for mortality deceleration at 
older ages in mice. George Sacher believed that the observed mortality deceleration in 
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mice and rats can be explained by population heterogeneity: “one effect of such residual 
heterogeneity is to bring about a decreased slope of the Gompertzian at advanced ages. 
This occurs because sub-populations with the higher injury levels die out more rapidly, 
resulting in progressive selection for vigour in the surviving populations” (Sacher, 1966, 
p. 435). Strehler and Mildvan considered mortality deceleration at advanced ages as a 
prerequisite for all mathematical models of aging to explain (Strehler and Mildvan 1960).  

Later Economos published a series of articles claiming a priority in the discovery 
of a “non-Gompertzian paradigm of mortality” (Economos 1979; Economos 1980, 1983, 
1985). He found that mortality leveling-off is observed in rodents (guinea pigs, rats, 
mice) and invertebrates (nematodes, shrimps, bdelloid rotifers, fruit flies, degenerate 
medusae Campanularia Flexuosa). In the 1990s, the phenomenon of mortality 
deceleration and leveling-off became widely known after publications, which 
demonstrated mortality leveling-off in large samples of Drosophila melanogaster 
(Curtsinger et al. 1992; Curtsinger et al. 2006) and medflies Ceratitis capitata (Carey et 
al. 1992). Mortality plateaus at advanced ages are observed for some other insects: 
house fly Musca vicina, blowfly Calliphora erythrocephala (Gavrilov 1980), house fly 
Musca domestica (Gavrilov and Gavrilova 2006), fruit flies Anastrepha ludens, 
Anastrepha obliqua, Anastrepha serpentine, parasitoid wasp Diachasmimorpha 
longiacaudtis (Vaupel et al. 1998), and bruchid beetle Callosobruchus maculates (Tatar, 
Carey and Vaupel 1993). Interestingly, the failure kinetics of manufactured products 
(steel samples, industrial relays, and motor heat insulators) also demonstrates the same 
“non-aging” pattern at the end of their “lifespan” (Economos 1979).  

Population heterogeneity, first proposed by Beard in 1959, is by far the most 
common explanation of mortality deceleration (Horiuchi and Wilmoth 1998). Another 
explanation of this phenomenon comes from the reliability theory of aging, which 
explains mortality leveling-off by an exhaustion of organism‟s redundancy (reserves) at 
extremely old ages so that every random hit results in death (Gavrilov and Gavrilova 
1991; Gavrilov and Gavrilova 2001; Gavrilov and Gavrilova 2006). There is also an 
opinion that lower risks of death for older people are due to their less risky behavior 
(Greenwood and Irwin 1939). Finally, some researchers suggest evolutionary 
explanations for the phenomenon of mortality leveling-off (Charlesworth 2001; Mueller 
and Rose 1996).  

The existence of mortality plateaus is well established for a number of lower 
organisms, mostly insects. In the case of mammals, data are much more controversial. 
Lindop (1961) and Sacher (1966) reported short-term periods of mortality deceleration in 
mice at advanced ages and even used Perks formula in their analyses. However, Austad 
later argued that rodents do not demonstrate mortality deceleration even in the case of 
large samples (Austad 2001). Study of baboons found no mortality deceleration at 
advanced ages (Bronikowski et al. 2002). In the case of humans this problem is not yet 
resolved, because of scarceness of data and/or their low reliability. Thus, more studies 
on larger human birth cohorts are required to establish with certainty the true mortality 
trajectory at advanced ages. 

 
 
3. Hazard rate (mortality force) estimation at advanced ages 
 
A conventional way to obtain estimates of mortality at advanced ages is a construction of 
demographic life table with probability of death (qx) as one of important life table 
functions. Although probability of death is a useful indicator for mortality studies, it may 
be not the most convenient one for studies of mortality at advanced ages.  First, the 
values of qx depend on the length of the age interval Δx for which it is calculated.  This 



Gavrilova, N.S., Gavrilov, L.A. - Old-Age Mortality Measurement and Modeling 

 

6 

 

hampers both analyses and interpretation.  For example, if one-year probability of death 
follows the Gompertz law of mortality, probability of death calculated for other age 
interval does not follow this law (Gavrilov and Gavrilova 1991; Le Bras 1976).  Thus it 
turns out that the shape of age trajectory for qx depends on the arbitrary choice of age 
interval.  Also, by definition qx is bounded by unity, which would inevitably produce 
apparent mortality deceleration when death rates are particularly high.  

More useful indicator of mortality at advanced age is instantaneous mortality rate 

(mortality force) or hazard rate, x which is defined as follows: 
 

x =
dN x

N
x
dx

=
d ln( )N x

dx

ln( )N x

x
 

 
where Nx is a number of living individuals exposed to risk of death at age x. It follows 
from the definition of hazard rate that it is equal to the rate of decrease of logarithmic 
survival function with age. In actuarial practice, hazard rate is often called mortality force 
as it was done in the original paper by Benjamin Gompertz (Gompertz 1825). Hazard 
rate does not depend on the length of the age interval (it is measured at the instant of 
time x), has no upper boundary and has a dimension of rate (time-1).  It should also be 
noted that the famous law of mortality, the Gompertz law, was first proposed for fitting 
the age-specific hazard rate function rather than probability of death (Gompertz 1825).  
 
The empirical estimates of hazard rates are often based on suggestion that age-specific 
mortality rate or death rate (number of deaths divided by exposure) is a good estimate of 
theoretical hazard rate.  One of the first empirical estimates of hazard rate was proposed 
by George Sacher  (Sacher 1956; Sacher 1966):   
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This estimate is unbiased for slow changes in hazard rate if x
x

<< 1  (Sacher, 

1966) and was shown to be the maximum likelihood estimate (Gehan and Siddiqui 
1973). A simplified version of Sacher estimate (for small age intervals equal to unity) is 

often used in biodemographic studies of mortality:  x = -ln(1-qx).  This estimate was 
initially suggested by Gehan who called it a „Sacher‟ estimate (Gehan 1969; Gehan and 
Siddiqui 1973). It is based on the assumption that hazard rate is constant over age 
interval and is shifted by one half of a year to younger ages compared to the original 
Sacher estimate.  

Another empirical estimate of hazard rate, often used in life table construction (Klein 
and Moesberger 1997), is the actuarial estimate, which is calculated in the following way 
(Kimball 1960):  
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This estimate assumes uniform distribution of deaths over the age interval and is 
bounded by 2/∆x, so this is not the best estimate of hazard rate at extreme old ages 
when death rates are particularly high (Gavrilov and Gavrilova 1991). 
 
At advanced ages, when death rates are very high, the assumptions about small 
changes in hazard rate or a constant hazard rate within the age interval become 
questionable.  The same is true for the assumption of uniform distribution of deaths 
within the age interval. Simulation studies showed that the bias in hazard rate estimation 
increases with the increase of the age interval (Kimball 1960).  Narrowing the age 
interval for hazard rate estimation from one year to one month helps to improve the 
accuracy of hazard rate estimation.   

 
 

4. Social Security Administration Death Master File as a source of mortality data 
for advanced ages.  

Social Security Administration Death Master File (DMF) is a publicly available data 
source that allows a search for deceased individuals in the United States using various 
search criteria: birth date, death date, first and last names, social security number, place 
of last residence, etc. This resource covers deaths that occurred in the period 1937-2010 
(Faig 2001) and captures about 95% of deaths recorded by the National Death Index 
(Sesso, Paffenbarger and Lee 2000).  According to other estimates, DMF covers about 
90 percent of all deaths for which death certificates are issued (see Faig, 2001) and 
about 92-96 percent of deaths for persons older than 65 years (Hill, Rosenwaike, 2001). 

Social Security Administration Death Master File (DMF) was used in our study of 
age-related mortality dynamics after ages 85 years.  The advantage of this data source 
is that some already extinct birth cohorts covered by DMF could be studied by the 
method of extinct generations (Kannisto 1988, 1994; Vincent 1951). Information 
available in DMF includes: names of the deceased, his/her social security number, date, 
month, year of birth, month and year of death, state of SSN issuance, place of the last 
residence.  

In this study information from the DMF was collected for individuals who lived 88 
years and over and died before 2011.  DMF database is unique because it represents 
mortality experience for very large birth cohorts of the oldest-old persons.  In this study 
mortality measurements were made for cohorts, which are more homogeneous in 
respect to the year of birth and historical life course experiences. Availability of month of 
birth and month of death information provides a unique opportunity to obtain hazard rate 
estimates for every month of age, which is important given extremely high mortality after 
age 100 years. Despite certain limitations, this data source allows researchers to obtain 
detailed estimates of mortality at advanced ages.  We already used this data resource 
for centenarians‟ age validation in the study of centenarian family histories (Gavrilova 
and Gavrilov 2007).  This data resource is also useful in mortality estimates for several 
extinct or almost extinct birth cohorts in the United States. 

 
 

5. Hazard rate estimates at advanced ages using data from the Social Security 
Death Master File 

In this study we collected information from the DMF publicly available at 
Rootsweb.com website.  The total number of records collected from this resource was 
about 9 million with more than 900,000 records belonging to persons who lived 100 
years and over.  We obtained data for persons who died before 2011 and were born in 
1875-1895. Persons born in these years and alive in 2010 should survive to at least 115 
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years, which can be considered as very unlikely event.  Thus, the 1875-1895 birth 
cohorts in this sample may be considered as practically extinct.  Assuming that the 
number of living persons belonging to these birth cohorts in 2010 is close to zero, it is 
possible to construct a cohort life table using well-known method of extinct generations, 
which was suggested and explained by Vincent (1951) and developed further by 
Kannisto (Kannisto 1994).   

DMF provides information about years and months of birth and death. However 
information on exact day of death is not available for all records, so we were not able to 
calculate lifespan in days. Nevertheless we were able to calculate individual lifespan with 
one-month accuracy, which is still higher than the accuracy of traditional yearly estimate 
of lifespan. In the first stage of our analyses we calculated an individual life span in 
completed months:  

 
Lifespan in months = (death year – birth year) x 12 + death month – birth month 

 
Having this information it is possible to estimate hazard rates at each month of age 

by standard methods of survival analysis.  All calculations were done using the Stata 
statistical software, release 11 (StataCorp 2009). This software calculates nonparametric 
estimates of major survival functions including the Nelson-Aalen estimator of hazard rate 
(force of mortality).  Note that hazard rate, µ(x), in contrast to probability of death, q(x), 
has a dimension of time frequency, because of the time interval in the denominator 
(reciprocal time, time-1).  Thus the values of hazard rates depend on the chosen units of 
time measurement (day-1, month-1 or year-1).  In this study, survival times were measured 
in months, so the estimates of hazard rates initially had a dimension of month-1.  For the 
purpose of comparability with other published studies, which typically use the year-1 time 
scale, we transformed the monthly hazard rates to the more conventional units of year-1, 
by multiplying these estimates by a factor of 12 (one month in the denominator of hazard 
rate formula is equal to 1/12 year).  It should be noted that hazard rate, in contrast to 
probability of death, can be greater than 1, and therefore its logarithm can be greater 
than 0 (and we indeed observed these values at extreme old ages in some rare cases 
as will be described later). In this paper we focus our analyses on 1881-1895 birth 
cohorts, because we found that data quality for cohorts born before 1881 is not 
particularly good.  

In our study we used Nelson-Aalen hazard rate estimates provided by Stata 
statistical software (StataCorp 2009). In fact, the Nelson-Aalen method was initially 
proposed for cumulative hazard rate estimation (particularly for right-censored survival 
data) (Klein and Moesberger 1997). In Stata hazard rate estimation is made by taking 
the steps of the Nelson-Aalen cumulative hazard function (Cleves et al. 2008), so that for 
each observed time of death, xj the estimated hazard contribution is:  

 

ÂAH ( )x j = ÂAH ( )x j ÂAH ( )x j 1  
where             is an estimate of cumulative hazard function.  

 
The way of hazard rate estimation conducted in Stata is similar to calculation of life 

table probability of death (StataCorp 2009), i.e. the number of deaths in the studied age 
interval is divided by the number alive at the beginning of age interval.  At advanced 
ages when mortality is high and for relatively large age intervals, number of persons 
exposed to risk of death in the middle of age interval is substantially lower than the 
number alive at the beginning of age interval. This would result in downward bias in 
hazard rate estimates at advanced ages, which we observed in our study when the 

ÂAH ( )x
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Nelson-Aalen estimates were applied to yearly age intervals (Figure 1, lower line). 
However, for smaller monthly age intervals, the problem described above is not so 
crucial and the Nelson-Aalen method still can be applied (see Figure 1, upper line).  

 
 

 
Figure 1. Logarithm of hazard rate (per year) as a function of age calculated for monthly 

and yearly age intervals. Hazard rate estimates were obtained using Nelson-Aalen estimate. 

Solid lines show polynomial fit with quadratic term. Data for 1891 birth cohort from the 

Social Security Administration Death Master File.  

 
 
Note that hazard rate values calculated on monthly basis demonstrate steady 

exponential growth up to the age 105 years (Figure 1).  After the age 105 years mortality 
trajectories show a small tendency for deceleration with age. Study of hazard rate 
estimates for several other single-year birth cohorts (1886-1895) found a similar age 
pattern for mortality at advanced ages.  

 
Another issue that makes monthly age intervals preferable for hazard rate estimation 

is the pattern of deaths distribution within studied age interval at extremely old ages. 
This issue is important because some estimates of hazard rate (for example, the 
actuarial estimate of hazard rate) are based on the assumption of approximately uniform 
distribution of deaths within one-year age intervals (Gehan and Siddiqui 1973; Kimball 
1960; Watson and Leadbetter 1964).  Indeed this assumption is consistent with the data 
for 90-year olds, presented in Figure 2a.  However for 102-year olds, the distribution of 
deaths is obviously not uniform, with far more deaths occurring at the beginning of age 
interval (Figure 2b).  To alleviate this problem, it is preferable to make mortality 
estimates at advanced ages for shorter (monthly) age intervals, rather than for traditional 
one-year age intervals when actuarial estimate of hazard rate is applied.  
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a) 

 
 
b) 

 
Figure 2. Deaths at extreme old ages (102 years) are not distributed uniformly over one-

year age interval in contrast to earlier age groups (90 years).  

1891 birth cohort from the SSA DMF.  

a) Distribution for 90-year-olds 

b) Distribution for 102-year-olds 

 
Using single-year birth cohort data from the SSA DMF we were able to minimize the 

effects of population heterogeneity on age-related mortality dynamics. We were also 
able to calculate more accurate monthly estimates of hazard rates, which are less prone 
to possible biases caused by violation of typical assumptions used in mortality estimation 
(Kimball 1960). However we were not able to control for possible age misreporting 
among the deceased. The most common type of age misreporting among very old 
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individuals is age exaggeration (Willcox et al. 2008). This type of age misreporting 
results in underestimation of mortality rates at advanced ages. Thus, we may suggest 
that mortality deceleration after age 105 years among DMF cohorts may be caused by 
poor data quality (age exaggeration) at very advanced ages. If this hypothesis is correct 
then mortality deceleration at advanced ages should be less expressed for data with 
presumably better quality. In order to test this hypothesis we conducted a data quality 
study for DMF birth cohorts. 

 
 

6. Measures to improve data quality  
Mortality deceleration and even decline of mortality is observed usually for data of 

low quality.  On the other hand, improvement of data quality results in straighter mortality 
trajectory in semi-log scale (Kestenbaum and Ferguson 2002).  Thus, we may suggest 
that mortality estimates at advanced ages should be lower in populations with less 
accurate age reporting compared to populations with more accurate age reporting. In 
order to test this hypothesis, we compared mortality trajectories at advanced ages for 
populations with different quality of age reporting.  
 

 
Figure 3. Regional mortality data with presumably different quality. 
Logarithm of hazard rate (per year) for 1891 birth cohort as a function of age. Comparison 

of less reliable (“Southern” group) and more reliable (“Northern” group) data.  Solid lines 

show polynomial fit with quadratic term. Data from the Social Security Administration 

Death Master File. 

 

Study of age validation among individuals aged 110 years or more (Rosenwaike and 
Stone 2003) demonstrated that age reporting among supercentenarians in Social 
Security Administration database is rather accurate with exception of persons born in the 
Southern states.  In order to compare populations with presumably different data quality 
we split DMF records into two groups. In the first („Southern‟) group of less reliable data 
we included records for those persons who applied for social security number in the 
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Southeast states (AR, AL, GA, MS, LA, TN, FL, KY, SC, NC, VA, WV), Southwest states 
(AZ, NM, TX, OK), Puerto Rico and Hawaii. We also added to this group all records for 
persons applied to SSN in New York and California because of very high proportion of 
immigrants (with unknown quality of age reporting) residing in these states. In the 
second („Northern‟) group with presumably better data quality we included persons 
applying to social security number in all other states as well as retired rail-road workers.  

 

Figure 3 shows age-trajectories of mortality for persons born in 1891 and applied for 
SSN either in “Southern” or “Northern” states. Note that the line corresponding to 
polynomial fit of the logarithm of mortality with age is straighter for “Northern” group 
(upper line) compared to the line corresponding to mortality of “Southern” group (lower 
line). Thus, the estimates of age-specific mortality demonstrate straighter trajectory of 
mortality in semi-log scale for population of “Northern” states with presumably better 
quality of age reporting compared to population with less reliable quality of age reporting 
(verified using polynomial fit of mortality data). 

 

 
Figure 4. Historical mortality data with presumably different quality. 
Logarithm of hazard rate (per year) for two birth cohorts as a function of age. Comparison of 
less reliable (older 1881 birth cohort, lower line) and more reliable (more recent 1891 birth 
cohort, upper line) data. Solid lines show fit by polynomial function with quadratic term. Data 
from the Social Security Administration Death Master File. 

 
Similar phenomenon is observed when mortality data for earlier birth cohort are 

compared to mortality data for later birth cohort.  Records for later born persons are 
expected to be of better quality due to improvement of age reporting over time. Taking 
into account that age reporting is improving over the history we may suggest that 
mortality for later birth cohorts would follow the Gompertz law more closely compared to 
the mortality of earlier birth cohorts with presumably lower data quality. This suggestion 
is confirmed by comparing 1881 and 1891 birth cohorts (Figure 4). More recent 1891 
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birth cohort demonstrates straighter trajectory and lower statistical noise after age 105 
than the older 1881 one (see Figure 4).  Thus, we may expect that future extinct cohorts 
born after 1891 may demonstrate even better fit by the Gompertz model than the older 
ones because of continuously improving accuracy in age reporting.   

 
Quantitative estimation of the degree of mortality deceleration at older ages was 

conducted by modeling the logarithm of hazard rate as a polynomial function of age.  In 
the case of mortality deceleration, the hazard rate would be described by a convex 
parabola in semi-log coordinates. This is expressed as a negative parameter at 
quadratic term and the absolute value of this parameter can be used as a measure of 
mortality deceleration. Table 1 presents values of the parameter at quadratic term for 
polynomial regression of logarithm of hazard rate as a function of age (after age 90).  
Note that the absolute value of parameter at quadratic term is higher for older birth 
cohorts and „Southern‟ group of less reliable records (described earlier) confirming that 
data with lower quality demonstrate a higher degree of mortality deceleration.   

 
Table 1. Comparison of the degree of mortality deceleration at advanced ages 
using polynomial regression model†.  

Population Parameter at quadratic term x 105 (95%CI) 

1881 birth cohort -75.5   (-76.7, -74.4) 

1889 birth cohort -38.3   (-38.9, -37.8) 

1894 birth cohort 5.2   (4.7, 5.6) 

  

1891 birth cohort:  

Northern group (more reliable data) -18.7   (-19.6, -17.8) 

Southern group (less reliable data) -64.7   (-65.7, -63.6) 

  

1893 birth cohort:  

Northern group (more reliable data) -7.4   (-8.2, -6.6) 

Southern group (less reliable data) -18.3   (-19.2, -17.3) 

  

1891 birth cohort:  

yearly age intervals -48.9   (-49.1, -48.6) 

monthly age intervals -25.5   (-25.8, -25.1) 
† Logarithm of hazard rate after age 90 for particular population was fitted by polynomial 

regression model with quadratic term.  

 
Based on the results presented above we may conclude that the better the quality of 

mortality data at advanced ages the closer mortality trajectories are to the Gompertz 
function.  However, we have to admit that the data at very old ages are noisy and have 
quality problems even for „Northern‟ group and the most recent birth cohorts. Thus, our 
next step in data quality control is to identify the age interval with reasonably good data 
quality and then to compare competing mortality models in this age interval.  

One approach to test data quality at advanced ages is to calculate female to male 
ratio at advanced ages. Taking into account that female mortality is always lower than 
male mortality it is reasonable to expect that the female-to-male ratio should 
continuously increase with age. On the other hand, old men have a tendency for age 
exaggeration and in populations with poor age registration there is a relative excess of 
men at very advanced ages (Caselli et al. 2006; Willcox et al. 2008).   
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Figure 5. Age-specific hazard rates (log scale) for men (upper line) and women 

(lower line) born in 1891. Solid lines show fit with polynomial function with quadratic 

term. Data from the Social Security Administration Death Master File. 

 
The SSA DMF does not have information about sex of the deceased. To cope with 

this limitation of data sample, we conducted a procedure of sex identification using 
information about the 1,000 most commonly used baby first names in the 1900s 
provided by the Social Security Administration (http://www.ssa.gov/OACT/babynames). 
These data come from a sample of 5 percent of all Social Security cards issued to 
individuals who were born during the 1900s in the United States. From the lists of male 
and female names we removed names consisting of initials and potentially unisex 
names (like Jessie or Lonnie). It is interesting to note that the SSA male list contains 
some obviously female names (Mary, Elizabeth) and the same problem was observed 
for the female list, which indicates that the SSA data apparently contain many sex 
misidentifications. These female names were removed from the male list and the same 
procedure was done for the female list. Additional male or female names found in DMF 
were also added to our sex identification name lists. Using the final lists of male and 
female first names we applied the sex identification procedure to the sample of 1879-
1895 birth cohorts. Eventually we were able to identify sex for 91-93 percent of records 
for persons in our sample. The remaining 7-9 percent of persons with unknown sex had 
approximately the same mean lifespan as the remaining percent of individuals with 
identified sex pooled together (checked with the t-test statistics), so the existence of 
possible sex non-identification bias in mortality seems unlikely. This data sample of 
774,926 individuals with known sex (out of 846,982 individuals) was used for identifying 
the age interval of reasonably good data quality using information on the female/male 
ratio at advanced ages.  

The result of hazard rate estimation for men and women born in 1891 is presented in 
Figure 5. Note that male mortality continues to exceed female mortality up to very 
advanced ages and this mortality differential narrows very slowly with age. At age 110 
years the number of remaining males (9) and females (61) is too small for accurate 

http://www.ssa.gov/OACT/babynames
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estimates of hazard rate after this age. This pattern of sex differential in mortality at very 
old ages confirms the validity of using female-to-male ratio as a tool of data quality 
assessment because higher male mortality at all observed ages should theoretically lead 
to continuously growing female/male ratio.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Observed female to male ratio at advanced ages for combined 1887-1892 

birth cohort. If data are of good quality then this ratio should grow with age 

 

 
 

Figure 7. Age of maximum female to male ratio, by birth cohort  
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We calculated female-to-male ratio after age 95 years for 1881-1895 U.S. birth 
cohorts from the SSA DMF. Figure 6 demonstrates the age dependency of this ratio for 
pooled sample of 1887-1892 birth cohorts (these cohorts have similar levels of 
mortality). Note that the female to male ratio is growing steadily with age up to ages 106-
107 years. After this age the female-to-male ratio starts to decrease indicating declining 
quality of age reporting. Thus, the estimates of hazard rates obtained from the SSA DMF 
are of acceptable quality up to the age of 106 years. Figure 7 shows the maximum age 
or tipping point when the female-to-male ratio starts to decline for different birth cohorts. 
It demonstrates that this age varies from 104 to 107 indicating the upper limit for data of 
reasonably good quality in terms of age reporting.  

Thus, our study of female-to-male ratio for different birth cohorts indicates that age 
reporting has reasonably good quality up to the age of about 106 years. For this reason 
we used age interval 88-106 years for mortality modeling.   

 
7. Modeling mortality at advanced ages  

Next step of our study was to compare two competing models of mortality at 
advanced ages - the Gompertz and the logistic models - using data of reasonably good 
quality. Study of data quality control at advanced ages described earlier suggests that 
age reporting among the oldest-old in the United States is good until the age of 106 
years. It means that comparing mortality models beyond this age is not feasible because 
of poor quality of mortality data. For this reason, we used a subsample of deaths for 
persons applied to SSNs in the „Northern‟ states (described above) and born in 1886-
1895, because these data have reasonably good quality.  We applied Gompertz and 
logistic (Kannisto) models (Thatcher et al. 1998) to mortality modeling in the age interval 
88-106 years using nonlinear regression method for parameter estimation. Calculations 
were performed using Stata statistical software, release 11.   

 

 
Figure 8. Mortality fitting using Gompertz (upper line) and logistic (lower line) 

models for 1891 birth cohort of persons applied to SSNs in the Northern states. Data from 

the Social Security Administration Death Master File 
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Figure 8 presents the results of mortality fitting after age 88 for Gompertz and 
Kannisto models using data for „Northern‟ states and 1891 birth cohort. Visual 
impression is that Gompertz model fits data better than the logistic model although for 
objective comparisons we need to use conventional measures of goodness-of-fit. In this 
study, goodness-of-fit for each model was estimated using the Bayesian information 
criterion (BIC). Table 2 shows values of BIC for both Gompertz and logistic model for ten 
studied birth cohorts. Note that in 8 out of 10 cases (studied birth cohorts), the Gompertz 
model demonstrates better fit (lower BIC) than the logistic model for age interval 88-106 
years.  

 
Table 2. Comparison of goodness-of-fit (Bayesian Information Criterion, BIC) 

for Gompertz and logistic models of mortality †.  

Birth cohort Cohort size at age 
88 years, persons 

Bayesian Information Criterion (BIC) 

Gompertz model†† Logistic model 

1886 111,657 -594776.2  -588049.5 

1887 114,469 -625303.0 -618721.4 

1888 128,768 -709620.7  -712575.5 

1889 131,778 -710871.1 -715356.6 

1890 135,393 -724731.0 -722939.6 

1891 143,138 -767138.3 -739727.6 

1892 152,058 -831555.3 -810951.8 

1893 156,189 -890022.6 -862135.9 

1894 160,835 -946219.0 -905787.1 

1895 165,294 -921650.3 -863246.6 
†. Estimates were made in the age interval 88-106 years for ten single-year U.S. birth cohorts and 

data of enhanced accuracy for individuals applied to SSNs in the Northern states (see explanation 

in the text). 
†† Cases when the Gompertz model fits data better than the logistic model are highlighted in bold. 

 
At this moment, we cannot make a conclusion that Gompertz model fits mortality 

data better than the logistic model after age 106, because of low quality of age reporting 
beyond this age. At the same time, the data indicate that the Gompertz model fits 
mortality data well until the age 106 years. Taking into account that survival beyond age 
106 years is rather rare event, it would be reasonable to suggest the use of Gompertz 
model rather than logistic model for closing cohort life tables in demographic practice. In 
this case, mortality modeling could be done first for hazard rate (mortality force) function 
and then all life table functions (including probability of death, qx) could be derived on the 
basis of modeled values of hazard rate.   

 
8. Comparison of DMF old-age mortality data with Actuarial Life Table  
Due to some limitations of the DMF data (incompleteness of death registration before 
the 1970s), we were unable to estimate mortality before the age 85-88 years. There is 
also a question whether our estimates of Gompertz parameters (slope parameter in 
particular) are applicable to a wider age interval or they are specific only for advanced 
ages (so-called two-stage Gompertz model).  In this study we compared our empirical 
estimates of cohort mortality at advanced ages, based on DMF data, with 1900 actuarial 
cohort life table (Bell, Wade and Goss 1992).  Unfortunately, there are no reliable U.S. 
cohort life tables for cohorts older than 1900, so we compared our mortality data for 
earlier birth cohorts to later 1900 birth cohort. It should be noted that adult U.S. 
population did not experience substantial mortality changes between 1890 and 1900. 
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According to the estimates made by historical demographers, life expectancy at age 40 
in the United States in 1890 (27.61 years) was practically the same as in 1900 (27.52 
years) (Haines 1998). Thus, we believe that mortality at advanced ages for 1900 birth 
cohort in the actuarial study and 1894 birth cohort we used for comparison should not be 
substantially different.  

We initially compared our DMF data with probability of death estimates from actuarial 
life table (qx) and found that life table values of probability of death show deceleration 
after age 100.  It should be noted, however, that the yearly estimates of probability of 
death (qx) and mortality force (µx) diverge at advanced ages. This happens because 
probability of death cannot continue its rapid growth when it approaches its 
mathematical upper limit equal to 1, while mortality force theoretically can increase 
indefinitely with age. Therefore, estimates of probability of death at advanced ages are 
biased downward compared to the hazard rate estimates. Hence, probability of death 
estimates beyond age 100 show deceleration in semi-log coordinates even if values of 
hazard rates follow the Gompertz model. 
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Figure 9 . Actuarial 1900 U.S. cohort life table and SSDI 1887 birth cohort. Source for 

actuarial life table: Bell, F.C., Miller, M.L. Life Tables for the United States Social Security 

Area 1900-2100. Actuarial Study No. 116. 

 
Formula proposed by George Sacher (Sacher 1956; Sacher 1966) gives more 

accurate estimates of hazard rate for yearly age intervals, so we applied a simplified 
Sacher formula for age-specific hazard rate conversion from qx values reported in 1900 
actuarial cohort life table:  
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x = -ln(1-qx)  
 
where qx is a probability of death value from the life table. 

 
Figure 9 shows the trajectories of age-specific hazard rates for 1900 birth cohort 

from the actuarial study and 1894 birth cohort from DMF over a broad age interval 
starting at age 50 years. Note that hazard rate estimates for the 1894 birth cohort are 
practically identical to the hazard rate estimates calculated on the basis of the actuarial 
life table. Also note that mortality of 1894 birth cohort has the same slope in semi-log 
coordinates as mortality of actuarial birth cohort calculated for much wider age interval, 
which does not support the suggestion about the two-stage Gompertz model of mortality 
at advanced ages. Indeed, the maximum likelihood estimator of the Gompertz slope 
parameter for mortality in 1894 cohort measured in the interval 88-106 years (0.0786 
year-1, 95%CI: 0.0786-0.0787) does not differ from the slope parameter calculated over 
the age interval 40-104 years in 1900 life table: 0.0785 year-1, 95%CI: 0.0772-0.0797. 
Thus, we may conclude that more accurate estimates of hazard rates at advanced ages 
based on individual mortality data practically coincide with hazard rate estimates 
calculated on the basis of 1900 actuarial cohort life table (Bell et al. 1992). It is 
remarkable that estimates in actuarial life table obtained by extrapolation of annual 
probabilities of death after age 95 (Bell et al. 1992) are practically identical to the 
observed estimates of hazard rates based on mortality experience of very large cohort of 
old individuals.  
 
9. Discussion  

This study of large single-year U.S. birth cohorts found that mortality deceleration at 
advanced ages is negligible up to the age of 106 years. Below the age of 107 years and 
for data of reasonably good quality the Gompertz model fits mortality better than the 
logistic model (no mortality deceleration). We also found that deceleration of mortality in 
later life is more expressed for data of lower quality. Quality of age reporting in DMF 
becomes particularly poor after the age of 107 years. It is also interesting that the DMF 
mortality data agree remarkably well with mortality estimates reported by the 1900 
actuarial cohort life table (if hazard rate values are compared).  

There are several reasons why earlier studies, including our own research (Gavrilov 
1984; Gavrilov and Gavrilova 1991), reported mortality deceleration and mortality 
leveling-off at advanced ages (Horiuchi and Wilmoth 1998; Kannisto 1994; Robine and 
Vaupel 2001; Thatcher 1999; Thatcher et al. 1998).  First, many studies present 
information for age-specific probability of death rather than hazard rate (Gallop and 
Macdonald 2005; Robine and Vaupel 2001). It is not surprising that probability of death 
has a tendency of deceleration at advanced ages when mortality is high, taking into 
account that this mortality indicator has theoretical upper limit equal to one. For example, 
a study of mortality among supercentenarians demonstrated that probability of death for 
this group does not increase with age (Robine and Vaupel 2001). The authors do not 
provide estimates of hazard rate for this small heterogeneous population, so at this 
moment it is difficult to make conclusion about the real mortality trajectory in this sample 
of very old individuals.  In the study of validated French-Canadian centenarians born in 
1870-1894 the authors found no growth of mortality with age for life table death rates 
rather than hazard rates (Beaudry-Godin, Bourbeau and Desjardins 2008). It is true that 
for young and middle ages (when mortality is relatively low) probability of death and 
hazard rate values are numerically close to each other. As a result, some authors do not 
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distinguish between probability of death and hazard rate in their calculations (Le Bras 
2005). 

In the studies of period mortality, deceleration at advanced ages is probably caused 
by mixing together data for several birth cohorts with different mortality levels 
(heterogeneity effect) and using cross-sectional instead of cohort data (Horiuchi and 
Wilmoth 1998; Kannisto 1994; Thatcher et al. 1998).  In addition to that, if information 
about population at risk is taken from censuses there is always a possibility of mismatch 
in the accuracy of age reporting between deaths and population at risk due to higher 
proportion of age misreporting in censuses (so-called denominator problem). It should 
be noted that mortality deceleration was also reported for cohort mortality data (Thatcher 
et al. 1998).  In this case, mortality deceleration may be caused by age misreporting in 
death data for older persons as we already found in our study. Earlier studies, conducted 
more than ten years ago, used data for older birth cohorts when age reporting was not 
particularly accurate even for such countries as the U.K (Gallop and Macdonald 2005). 
In addition to that, most developed countries have much smaller populations compared 
to the United States and hence studies of mortality at advanced ages for these countries 
have to combine together many single-year birth cohorts thereby increasing the 
heterogeneity of the sample. Thus, age exaggeration, use of probabilities of death 
instead of hazard rates and perhaps data heterogeneity could lead to downward biases 
in mortality estimates at older ages reported in previous studies.  

In our study we found no significant mortality deceleration at advanced age for 
humans while many lower organisms demonstrate very long late-age mortality plateaus 
(Carey et al. 1992; Curtsinger et al. 1992; Gavrilov and Gavrilova 1991; Vaupel et al. 
1998). Earlier studies showed that the period of mortality deceleration in mammalian 
species is very short (Lindop 1961; Sacher 1966) compared to lower organisms 
(Gavrilov and Gavrilova 2006; Vaupel et al. 1998).  It appears to be relatively short if not 
negligible in humans too.  This observation agrees with the prediction of the reliability 
theory of aging that more complex living systems/organisms with many vital subsystems 
(like mammals) may experience very short period of mortality plateau at advanced ages 
in contrast to more simple living organisms (Gavrilov and Gavrilova 1991; Gavrilov and 
Gavrilova 2001; Gavrilov and Gavrilova 2006).  Thus, human mortality at advanced ages 
may show very short or even negligible mortality plateau despite the evidence of 
mortality leveling-off among lower organisms such as insects. 

The results obtained in this study may be important for demographic practice, 
particularly if mortality is analyzed for real birth cohorts. For cohort data, hazard rates 
can be extrapolated with the Gompertz formula up to 107 years of age and then 
probabilities of death can be reconstructed with Sacher formula if necessary. Our study 
also suggests that improvement of age reporting in history may result in mortality 
trajectories that better follow the Gompertz function until very advanced ages.  
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