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Abstract

Variability in longevity has recently been shown to follow strikingly
different trends for the young and old: while overall mortality varia-
tion decreased as life expectancy at birth rose, survivors to older ages
have become increasingly heterogeneous in their mortality risks. These
diverging trends reflect changes in the underlying demographic param-
eters determining age-specific mortality. To understand these changes,
we employ a Siler model – which describes the mortality hazard across
the full lifespan and allows for the representation of distinct improve-
ments in early-life, later-life, and background mortality. Using maxi-
mum likelihood parameter estimation techniques and newly-developed
Markov-chain-based matrix calculus perturbation methods, we then
quantify the sensitivity of age-specific mortality variance trends to the
changing Siler model parameters. Our results suggest that the slower
pace and later start of survival improvements in adulthood relative
to those at younger ages form the dynamics that foster the growing
inequalities observed for survivors to older ages.

Introduction

To understand the demographic transition of the past century and a half,
researchers have analyzed the dynamics of population change using both
empirical data and mathematical models. While providing insight into the
dramatic increase in longevity, these analyses have also occasionally yielded
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new puzzles, such as the diverging trends in mortality variability for sur-
vivors to young and older ages.

Disparities in the length of life within populations are a fundamental
manifestation of health inequalities, and declining variation in longevity is
a marker of reduced disparities in population health. Indeed, survival im-
provements have taken place at all ages, including the oldest (Wilmoth et
al. 2001; Rau et al. 2008). However, age-specific trends in variance have not
exhibited a uniform pattern: while overall mortality variation decreased as
life expectancy at birth rose (Fries 1980, Wilmoth and Horiuchi 1999, Che-
ung et al. 2005), survivors to older ages have followed a conspicuously differ-
ent trend, becoming increasingly heterogeneous in their mortality risks. The
divergence in conditional variability measures can be summarized in a con-
tour plot (see figure 1 for an example), and are relatively consistent across
industrialized nations with at least five decades of reliable vital statistics
(Engelman et al. 2010).

The diverging trends in the contour plot raise important question about
why the variation in the adult ages at death has not diminished along with
the variation in overall mortality, and, furthermore, why it has increased
over time despite progress in medical innovation, public health, standards
of living, and aspects of social and economic development associated with
rising life expectancy at all ages (McKeown 1976, Szreter 2004). Because
the divergence in variance trends by age is visually striking, substantial, and
persistent, it should be accounted for in mortality models and in character-
izations of population health.

Our primary interest here is in whether mortality models are able to
capture the differences in conditional variability trends at different ages.
Specifically, we investigate the extent to which the models are able to de-
pict the growing variability in mortality conditional on survival to older
ages even while characterizing the declining variability in the overall mor-
tality distribution. Below, we examine the empirical trends in mortality
using the Siler model – which describes the hazard of mortality across the
full lifespan and allows for the representation of distinct improvements in
early-life, later-life, and background mortality. We then employ maximum
likelihood parameter estimation techniques and Markov-chain based pertur-
bation analysis to quantify the influence of each parameter in the Siler model
on the age-specific variance trends. We conclude by arguing that the slower
pace and later start of survival improvements in adulthood relative to those
at younger ages form the dynamics that foster the growing inequalities in
survival at older ages.
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The Siler Model

In 1979, William Siler proposed a mathematical model that conceived of the
lifetime mortality hazard trajectory as the result of three competing but non-
interacting hazard trajectories that together shape the empirical pattern of
mortality in animals. Siler argued that living beings are exposed to three
types of hazards throughout the lifespan: (1) a hazard that decreases from
birth onward as the animal adjusts to its environment, likely as a result of
maturation; (2) a constant hazard, reflecting a set of risks present in the
“background” and to which the animal does not adjust over time; and (3)
a hazard that increases with age, reflecting the growing risk of death as a
result of senescence. Combining these three components, Siler presented an
additive model that allowed for a mortality hazard that decreases in early
life, remains relatively flat between later childhood and young adulthood,
and then increases monotonically at older ages:

µ(x) = eα1−β1x + eα2+β2x + eα3 . (1)

In applying the Siler model back to human populations, contempo-
rary demographers (e.g. Canudas-Romo and Schoen 2005, Goldstein and
Wachter 2006) thus treat mortality over the life course as having three com-
ponents. The first term on the right hand side of the Siler model is described
as a representation of the exponentially declining mortality hazard during
childhood, the second term (which is a conventional Gompertz curve) as
the exponentially increasing mortality hazard in adulthood, and the third
term as a flat background mortality component, reflecting the overall (non
age-dependent) level of mortality in a given time. The Siler model fits as
well or better than most other models to human mortality data (Gage and
Dyke 1986, Gage and Mode 1993), and causes of death are accounted for by
the model in a manner consistent with the biological interpretations of the
the distinct hazard components (Gage 1991). Figure 2 demonstrates how
the three components additively create a bathtub shaped hazard function
for mortality across the lifespan.

Note that two potential shortcomings of the Siler model are that, like the
Gompertz model, it does not capture the deceleration at older ages, nor does
it account for the “hump” in early adult mortality (ages 15-30) characteristic
in some populations and frequently attributed to accidental and maternal
mortality. Nonetheless, the Siler model of mortality hazards across the life
course can represent a wider array of mortality change scenarios – including
the historical patterns that saw child mortality decline before adult mortality
– and is thus particularly well-suited for answering our question.
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Perturbation Analysis

Trends in the variability of longevity are the result of changes in the un-
derlying demographic parameters determining age-specific mortality. The
five-parameter Siler model provides a way to describe mortality hazards us-
ing scale parameters (α’s describing the level of mortality at younger ages,
older ages, and overall) and age-trend parameters (β’s describing the slope
of the hazard trajectory at younger ages and older ages). To better under-
stand the diverging mortality variability trends, it is useful to quantify the
sensitivity of these variability measures to changes in the Siler parameters.
Defined broadly, perturbation analysis is a set of mathematical tools for
quantifying the change in an outcome variable in response to a change in
another variable or set of variables on which the outcome depends (Caswell
1978). In demography, perturbation analysis has been used to describe
the sensitivity of population growth rates to changes in the environment or
in vital rates (Demetrius 1969, Keyfitz 1971, Goodman 1971, Magnus and
Neudecker 1988), and the sensitivity of life expectancy to changes in age-
specific mortality rates (Keyfitz 1977, Pollard 1982, Vaupel 1986, Keyfitz
and Caswell 2005).

Here, we use perturbation methods to explore the sensitivity of variance
measures conditional on survival to successive ages (sa) to changes in the
parameters of the Siler model of mortality across the full age spectrum.
Because trends in the conditional variance measures depend on the chang-
ing distribution of mortality, perturbation analysis offers an appealing way
to characterize and quantify the influence of each Siler model component
on mortality variability patterns across both age and time. This type of
analysis has not been done previously, and is now possible due to newly-
developed matrix calculus methods based on a Markov-chain population
model (Caswell 2006, 2008, 2010). The Markov chain formulation of mor-
tality and longevity analysis assumes that individuals move through a set of
transient states – in this case, ages – over their life cycle and eventually die,
or, in the multi-state terminology, enter an absorbing state in which they
remain thereafter. Since absorption – or mortality – is certain for all indi-
viduals, analyses of conditional longevity measures are analogous to inves-
tigating how long it takes until absorption occurs and what the distribution
of absorption times is given different initial states, or ages. Matrix calculus
provides a notational framework and permits the consistent differentiation
of functions of scalar, vector or matrix arguments.

The transition matrix representing the probabilities of survival and mor-
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tality from one age to the next can be written as

P =
(

U 0
M I

)
, (2)

where U is the matrix of survival (or transition) probabilities, px, between
transient states (i.e. the conditional probability of survival from age x − 1
to age x in the life table). px is a column vector of survival probabilities:

px = e−µ(x) (3)

Notably, the transition probabilities px that make up the matrix U are a
direct function of the mortality hazard function µ(x), which in our case is
represented by the five-parameter Siler model.

Given that the HMD life tables provide age specific probabilities of mor-
tality and survival for 111 ages (0-110+ years), U can be represented as a
square matrix of transition probabilities among the transient states:

U =


0 ... ... 0
p1

. . .
p110 0

 . (4)

Note that the last entry of U is zero, as no one survives beyond the final
(absorbing) age category in the life table.

M is the matrix of transition probabilities from transient states to the
absorbing state (i.e. the probability of mortality at age x), and can be
written as

M =


1− p1

1− p2

. . .
1

 . (5)

Note that M has the same number of columns (representing starting ages)
as U, but one less row (representing ages reached), as all members of the
life table “survive” into the initial age category.

I gives the probability of remaining in the absorbing state, and 0 gives
the probability of moving from an absorbing state to a transient state. Since
the absorbing state is death, the probability of remaining in the absorbing
state is 1 (represented by the identity matrix, I), and the probability of
leaving the absorbing state, 0, is zero.
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Within this framework, remaining life expectancy at any age x may be
analyzed in terms of how long it takes a person in that state x to enter
the absorbing state. If νix represents the number of visits to state i by
someone in state x before death, then the fundamental matrix N represents
the expected length of stay in each transient state:

N = E(νix) = (I−U)−1 (6)

Thus, if ηx is the number of visits to all transient states by an individual
in state x prior to absorption, then the life expectancy of an individual aged
x is the expectation of ηx. The expected longevity at all ages in the life
table may be obtained as the column sums of N:

E(η)T = 1TN, (7)

where 1 is a column vector of ones.
Similarly, under the Markov formulation, V (η)T represents the vector of

variances for longevity conditional on survival to each age:

V (η)T = 1TN(2N− I)− E(η)T ◦ E(η)T. (8)

Note that this equation is based on the classic definition of variance V ar[X] =
E[X2] − (E[X])2, and ◦ denotes the element by element multiplication of
the two life expectancy matrices.

By taking the derivative of the variance and applying the chain rule suc-
cessively to link U with the Siler hazard model, we can obtain the sensitivity
of the vector of conditional variances to changes in the five Siler parameters
θ = {α1, β1, α2, β2, α3}:

dV (η)
dθT

= [2(NT ⊗ 1T) + 2(I⊗ 1TN)− (I⊗ 1T)− 2 (diag (E(η))⊗ 1T)]

×(NT ⊗N)dvecU
dθT , (9)

Note that the vec function stacks the columns of a matrix into a single
vector, and ⊗ denotes a Kronecker product.

The standard deviation conditional on survival to each age is the square
root of the variance taken element-wise and its sensitivity is represented as:

dSD(η)
dθT

=
1
2

diag (SD(η))−1dV (η)
dθT

. (10)

Note that SD(η) is analogous to the sa notation used above to describe the
standard deviation conditional on survival to age a.
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Now, returning to the Siler model specifically and recalling the relation-
ships above, dvec U can be written as:

dvec U = diag (vec J)(1⊗ I)dp (11)

where dp, the derivative of each transition probability, is in turn a function
of the derivative of the mortality hazard (a Siler trajectory in this case) with
respect to a set of parameters θ:

dp = −diag (p)
dµ

dθT
, (12)

with J denoting a square matrix with ones on the sub-diagonal and zeros
elsewhere.

Finally, to obtain the derivative of the Siler hazard function with respect
to the set of all parameters, dµ

dθT , we rewrite the three component Siler model
as:

µ(x) = ew1 + ew2 + ew3 , (13)

with the corresponding derivatives:

dµ = ew1dw1 + ew2dw2 + ew3dw3, (14)

where

dw1 = dα1 − (dβ1)x
dw2 = dα2 + (dβ2)x
dw3 = dα3.

(15)

Using the chain rule, this perturbation analysis allows us to determine
and quantify the sensitivity of our outcome of interest (the standard devia-
tion of the mortality distribution conditional on survival to successive ages)
to unit changes in each of the five Siler hazard model parameters. The ques-
tion we aim to answer with this analysis is whether the pattern of mortality
improvement over time – as reflected in the Siler model parameters – dif-
ferentially affects the trends in mortality variability for the young and the
old.

Sensitivity of Variability Measures to Mortality Change

Maximum likelihood estimation (MLE) procedures allow us to simultane-
ously characterize all the parameters of the four mortality models under
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consideration. Applied successively to each year of data, the MLE proce-
dure can generate parameter trends that offer an added perspective on the
demographic transition.

Figure 3 presents maximum likelihood estimates for the 5 parameters
of the Siler model. All three α parameters, representing the overall levels
of child, adult, and background mortality hazards show a decline over time.
However, while the overall levels of child and background mortality (α1 and
α3, respectively) have declined in a relatively linear fashion, the α2 trend
indicates a period of slightly increased adult mortality between 1900-1930
before the beginning of a subsequent linear decline. The magnitude of α3

(background) at any year is greater than that of α1 (child mortality) but
less than that of α2 (adult mortality).

The β1 parameter, representing the age-trajectory of mortality decline
in childhood, has increased over time, suggesting a faster pace of decline
in the mortality hazard during the first years of life – a result consistent
with the known improvements in infant survival. The Trend in β2, the slope
of the age trajectory of adult mortality hazard, is somewhat less intuitive.
Mirroring the α2 trend, the parameter value declines between 1900-1930,
followed by a subsequent increase, indicating (as above) that the slope of
the adult hazard trajectory may have grown steeper over time even as age-
specific mortality hazards declined. The absolute magnitude of the change in
the β parameters is very modest and considerably smaller than the change in
the α parameters. This is particularly true for β2, whose absolute magnitude
is lowest.

Perturbation analysis offers a precise way to characterize and quantify
the sensitivity of age-specific variance measures (and their trends over time)
to changes in all model parameters using derivatives. As can be seen in
figure 4 and figure 5, the Siler components differ in their influence on the
pattern of variability by both age and time.

Figure 4 presents the sensitivity of sa (where a ranges from 0 to 110) to
a change in each Siler parameter for 6 selected years. Notably, all five Siler
parameters have a consistently positive (α1, α3) or consistently negative (α2,
β2, β1) effect. The patterns for the parameters representing infant mortality
(α1 and β1, left column) mirror each other, as the sensitivity to α1 declines
with age and the sensitivity to β1 increases, with both approaching 0 as
age increases. The two parameters are only influential for those variability
measures that include the complete distribution and survivors to the first
few years of life but not for measures conditional on survival to subsequent
ages. The symmetrical pattern of the two parameters means that either an
increase in the child mortality level or a decrease in age-trajectory of the
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mortality hazard will increase overall mortality variability (s0) or variability
conditional on survival to very young ages. Notably, while in 1900 the
magnitude of the sensitivity for both α1 and β1 was relatively high and
each parameter’s impact extended up to age 5, by later years the sensitivity
declined markedly, and the two parameters’ influence was confined to the
first year of life.

In contrast, the parallel influences of α2 and β2, the two parameters
defining the trajectory of mortality hazards in adulthood, extend across the
full lifespan. Note that at all ages the sensitivity is negative, suggesting
that an increase in either the overall level or age-trajectory of adult mortal-
ity would reduce variability, and, conversely, improved survival in adulthood
will increase the age-specific variation. The sensitivity of the standard de-
viation of the mortality distribution at any age to β2 is nearly an order of
magnitude greater than its sensitivity to α2, though the absolute magnitude
of β2 and its change over time is much smaller than that of α2.

In 1900, the sensitivity of sa to changes in both α2 and β2 had a high
negative magnitude for measures conditional on survival to early ages, and
approached 0 at higher ages. For both parameters, the sensitivity slope was
steeper at older ages than it was at younger ages, with a plateau between
(roughly) ages 50 and 70. Throughout the 20th century, the sensitivity
to both parameters at younger ages declined (approaching zero), while the
sensitivity at older ages increased slightly. The result, evident by the second
half of the twentieth century, was a flat age-trajectory of sensitivity up to
age 50, relatively more sensitivity for measures conditional on survival to
age 50-75, and finally a steep reversal for measures conditional on survival
to older ages.

The visual display of the sensitivity of sa to α3, the parameter determin-
ing background or overall mortality level, underscores the importance of this
component to shaping the variability trends. The sensitivity is highest at
young ages (particularly under 10) and approaches zero at older ages. This
sensitivity has declined over time, but remains appreciable at young ages.
Notably, at most ages, the conditional variance is more sensitive to changes
in α3 than changes in any of the other parameters, with the exception of β2.

For another perspective on the relationship between the Siler param-
eters and conditional variability, figure 5 presents the trends over time
(1900-2007) in the sensitivity of the standard deviation of mortality for
survivors at selected ages (0, 10, 50, and 75) to changes in each model pa-
rameter. Trends in the sensitivities of the unconditional standard deviation
(s0) to each parameter display clear differences between values in the first
and second half of the twentieth century. For example, while the childhood
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mortality parameters α1 and β1 were quite influential for s0 in 1900, after
six decades of steep decline it has remained relatively stable at very low lev-
els since about 1960. A similarly steep decline followed by stable lower rate
is apparent in the sensitivity of s0 to α3, the background mortality compo-
nent, whose sensitivity trends display a parallel pattern to the time trends in
the conditional variability measures themselves (see Engelman et al. 2010).
The sensitivity of s0 to the two adult mortality parameters, α2 and β2, also
shows two distinct phases, where the negative sensitivity approaches zero
at a rapid pace during the first part of the century, and then stabilizes (or
continues to decline slightly) during the latter part of the century. Trends
for the sensitivity of s10 to the same parameters follow a roughly similar pat-
tern, consistent with the idea that the main advances in reducing childhood
mortality took place in the first half of the twentieth century.

s50 and s75 are not sensitive to the childhood mortality parameters, and
s50 (but not s75) shows slight responsiveness to α3 early in the twentieth
century, but this sensitivity wanes over the decades. The main contrast
between the two measures is apparent in their sensitivities to the adult mor-
tality parameters α2 and β2, which were similar in 1900, but have diverged
substantially since. The relative stability (despite fluctuations) in the sen-
sitivity of s75 to the two parameters over time may seem counter-intuitive
given the observed rise in mortality heterogeneity at older ages, but it is
worth noting that this relative stability stands in contrast to the declining
sensitivity in measures conditional on survival to younger ages: while s75

was relatively less sensitive to α2 and β2 in the first part of the twentieth
century than s0, s10, and s50, the mid-century cross-over has resulted in a
greater contemporary sensitivity of s75 to α2 and β2 relative to its counter-
part measures.

Discussion

An examination of trends in the Maximum-likelihood parameter estimates
for Siler model indicates that the parameter representing the age-slope of
mortality (β2) is indeed increasing, suggesting the slope is getting steeper
over time. This steeper slope also appears to be associated with the growing
variance of the mortality distribution at older ages, a trend that has persisted
despite the concomitant decline in the α levels characterizing adult mortality.

At first consideration, the change over time in the slope of the age-
trajectory of mortality – even though small in magnitude – appears puzzling
and counter-intuitive. For one, the early declines in the slope parameter take
place in the first decades of the 20th century – before the notable declines in
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adult mortality. At the same time, by the later decades in the century, when
adult mortality was known to be declining, the slope began to grow steeper,
potentially suggesting a higher rate of mortality hazard increase with age.
The reason that this gradually steepening slope does not result in rising,
rather than declining age-specific mortality is the faster pace of decline in
the α-type intercept parameters representing overall mortality levels. But
why are β and β2 increasing?

One potential explanation is that for the cohorts aging through this
period of demographic and epidemiologic change, progress in reducing mor-
tality in adulthood has not fully counterbalanced the effect of improved
survival in early life. We previously suggested that as a result of ongo-
ing survival improvements at younger ages, delayed mortality selection has
pushed health disparities from early to later life, where they manifest in
the growing inequalities in late-life mortality (Engelman et al. 2010). Our
current findings add support for the hypothesis that the empirical trends in
mortality variation reflect changes in the underlying composition and health
status of successive aging cohorts. If a growing number of frail people (who
experience a higher mortality hazard at every age relative to their more ro-
bust counterparts) survives to every age over time, then, in line with the
theory of heterogeneity (Vaupel et al. 1979, Vaupel and Yashin 1985), the
observed mortality trajectory would reflect a constant or even slightly in-
creased hazard at every age. The increase we observe in the β parameters
over time may thus reflect a “failure of success.”

As the parameters defining the trajectory of mortality change over time,
so does the sensitivity of each age-specific variability measure. Perturbation
analysis enabled us to quantify this relationship, showing the differential re-
sponses of variability measure conditional on survival to younger and older
ages to the parameters defining the course of adult and background mortal-
ity levels. The third Siler model component, which is not considered to be
age-dependent, nonetheless proved essential for the reproduction of the di-
vergence, by age, of variability trends in our simulations. The perturbation
analysis showed it to be among the most influential parameters in the Siler
model in terms of defining the age-specific variability level for the young and
middle-aged alike. Our results indicate that the timing and magnitude of
declines in adult and background mortality influence the increased variabil-
ity trend for survivors to adulthood and older ages and its divergence from
the observed decline in variability for the complete distribution of ages at
death. Thus, it is the slower pace and later start of survival improvements
in adulthood relative to those at younger ages which form the dynamics that
manifest in the growing inequalities in survival at older ages.
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Figure 1: Trends in age-specific standard deviations of the mortal-
ity distribution for Swedish females, 1900-2006. Color is assigned
according to the ratio of the standard deviation in the distribution of mor-
tality for survivors to a given age (y-axis) in a given year (x-axis), relative
to the age-specific value in 1900. White represents a ratio of 1 (no change);
successively darker blues represent declining values < 1; successively darker
reds represent increasing values > 1. Source: HMD 2009 and Engelman et
al. 2010.
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Figure 2: The three-component Siler model: µ(x) = eα1−β1x+eα2+β2x+
eα3 , where the first term on the right represents the mortality pattern dom-
inant in childhood, the second term represents the mortality pattern dom-
inant in adulthood, and the third term represents a background mortality
level. Created with parameter values: α1 = −2.4, β1 = 0.6, α2 = −9.5,
β2 = 0.09, and α3 = −6.9.

16



19
00

19
20

19
40

19
60

19
80

20
00

6543
1 C

hi
ld

 T
re

nd
s

Ye
ar

1 (child mortality)

19
00

19
20

19
40

19
60

19
80

20
00

12.511.510.5

2 A
du

lt 
Tr

en
ds

Ye
ar

2 (adult mortality)

19
00

19
20

19
40

19
60

19
80

20
00

8765

3 B
ac

kg
ro

un
d 

Tr
en

ds

Ye
ar

3 (background mortality)

19
00

19
20

19
40

19
60

19
80

20
00

1.52.02.53.03.5

1 C
hi

ld
 T

re
nd

s

Ye
ar

1 (child mort. age trajectory)

19
00

19
20

19
40

19
60

19
80

20
00

0.1000.1050.1100.1150.120

2 A
du

lt 
Tr

en
ds

Ye
ar

2 (adult mort. age trajectory)

F
ig

ur
e

3:
T

re
n

d
s

in
m

ax
im

u
m

li
ke

li
h

o
o
d

p
ar

am
et

er
es

ti
m

at
es

fo
r

th
e

S
il
er

m
o
d

el
.

N
ot

e
th

at
th

e
ch

ild
m

or
ta

lit
y

pa
ra

m
et

er
β

1
is

ne
ga

ti
ve

in
th

e
Si

le
r

eq
ua

ti
on

,
w

hi
le

al
l

ot
he

r
pa

ra
m

et
er

s
ar

e
po

si
ti

ve
.

B
as

ed
on

lif
e

ta
bl

es
fo

r
Sw

ed
is

h
fe

m
al

es
19

00
-2

00
7.

17



0
2

4
6

8
10

0.00.51.01.5
SD

 S
en

si
tiv

ity
 to

 
1 a

t e
ve

ry
 a

ge

Ag
e

Sensitivity to 1

19
00

19
25

19
50

19
75

20
07

0
20

40
60

80
10

0

3.52.51.50.5

SD
 S

en
si

tiv
ity

 to
 

2 a
t e

ve
ry

 a
ge

Ag
e

Sensitivity to 2

19
00

19
25

19
50

19
75

20
07

0
20

40
60

80
10

0

012345

SD
 S

en
si

tiv
ity

 to
 

3a
t e

ve
ry

 a
ge

Ag
e

Sensitivity to 3

19
00

19
25

19
50

19
75

20
07

0
2

4
6

8
10

2.52.01.51.00.50.0

SD
 S

en
si

tiv
ity

 to
 

1 a
t e

ve
ry

 a
ge

Ag
e

Sensitivity to 1

19
00

19
25

19
50

19
75

20
07

0
20

40
60

80
10

0

25020015010050

SD
 S

en
si

tiv
ity

 to
 

2 a
t e

ve
ry

 a
ge

Ag
e

Sensitivity to 2

19
00

19
25

19
50

19
75

20
07

F
ig

ur
e

4:
S

en
si

ti
v
it

y
of

al
l

ag
e-

sp
ec

ifi
c

(c
on

d
it

io
n

al
)

st
an

d
ar

d
d

ev
ia

ti
on

m
ea

su
re

s
to

u
n

it
ch

an
ge

s
in

ea
ch

S
il
er

m
o
d

el
p

ar
am

et
er

fo
r

se
le

ct
ed

ye
ar

s.

18



19
00

19
20

19
40

19
60

19
80

20
00

0.00.51.01.52.0
Tr

en
ds

 in
 S

D
 s

en
si

tiv
ity

 to
 

1

Ye
ar

Sensitivity to 1

s 0 s 1
0

s 5
0

s 7
5

19
00

19
20

19
40

19
60

19
80

20
00

3.52.51.50.5

Tr
en

ds
 in

 S
D

 s
en

si
tiv

ity
 to

 
2

Ye
ar

Sensitivity to 2

s 0 s 1
0

s 5
0

s 7
5

19
00

19
20

19
40

19
60

19
80

20
00

012345

Tr
en

ds
 in

 S
D

 s
en

si
tiv

ity
 to

 
3

Ye
ar

Sensitivity to 3

s 0 s 1
0

s 5
0

s 7
5

19
00

19
20

19
40

19
60

19
80

20
00

2.52.01.51.00.50.0

Tr
en

ds
 in

 S
D

 s
en

si
tiv

ity
 to

 1

Ye
ar

Sensitivity to 1

s 0 s 1
0

s 5
0

s 7
5

19
00

19
20

19
40

19
60

19
80

20
00

250200150

Tr
en

ds
 in

 S
D

 s
en

si
tiv

ity
 to

 2

Ye
ar

Sensitivity to 2

s 0 s 1
0

s 5
0

s 7
5

F
ig

ur
e

5:
T

re
n

d
s

in
th

e
se

n
si

ti
v
it

y
of

co
n

d
it

io
n

al
st

an
d

ar
d

va
ri

an
ce

s
to

u
n

it
ch

an
ge

s
in

ea
ch

S
il
er

m
o
d

el
p

ar
am

et
er

fo
r

se
le

ct
ed

ag
es

,
19

00
-2

00
7.

19


	Introduction
	The Siler Model
	Perturbation Analysis
	Sensitivity of Variability Measures to Mortality Change
	Discussion

