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Abstract

We derive simple formulae linking period and cohort life expectancy, as well as their

rates of change, in Gompertz proportional hazards settings. They imply that a 2.5-year

gain per decade in period life expectancy, observed by Oeppen and Vaupel (2002), cor-

responds to a 3.3-year gain on the respective cohort basis. The validity of the two theo-

retically derived approximate formulae, as well as the appropriateness of model assump-

tions, has been tested empirically on datasets from the Human Mortality Database.

1 Relationship

Suppose the mortality schedule of a population is described by

µ(x, y) = e−ρy a0 e
bx (1)

on a period basis, which corresponds to
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µC(x, y) = e−ρy a0 e
(b−ρ)x (2)

on a cohort basis, i.e., by a Gompertz hazard that decreases with time y at a relative rate ρ at

all ages x simultaneously. Denote by eP0 (y) and eC0 (y) the period and cohort life expectancy

in y. Vaupel (1986) proved that (1) results in a linearly increasing eP0 (y) with an approximate

slope ρ/b. We will prove that (2) implies linear increase in eC0 (y), too. Moreover, for y →∞

eC0 (y)

eP0 (y)
−→ 1

1− ėP0 (y)
(3)

and

ėC0 (y) −→ ėP0 (y)

1− ėP0 (y)
, (4)

where ėP0 (y) = deP0 (y)/dy and ėC0 (y) = deC0 (y)/dy.

2 Proof of the relationship

The number of years lived in the next n by those who have survived to age x in year y is

(Keyfitz and Caswell 2005: 30)

L(x, n, y) =

x+n∫
x

`(v, y)dv, (5)

where
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`(x, y) = exp

−
x∫

0

µ(v, y)dv

 (6)

is the survival function of an individual aged x at time y.

Substituting (1) and (6) in (5), assuming `(0, y) = 1, setting x = 0 and letting n→ +∞, we

get the following expression for period life expectancy at birth:

eP0 (y) =
1

b
exp

{a0
b
e−ρy

}
E1

(a0
b
e−ρy

)
, (7)

where

E1(z) =

∞∫
z

e−t

t
dt (8)

is the exponential integral. A relationship, based on (2) and similar to (7), holds for eC0 (y),

as well:

eC0 (y) =
1

b− ρ
exp

{
a0
b− ρ

e−ρy
}
E1

(
a0
b− ρ

e−ρy
)
. (9)

The limit of eC0 (y)/eP0 (y) for y →∞ can be represented as

lim
y→∞

eC0 (y)

eP0 (y)
=

b

b− ρ
· lim
y→∞

exp

{
−a0ρ
b(b− ρ)

e−ρy
}
· lim
y→∞

E1

(
a0
b
e−ρy

)
E1

(
a0
b−ρ e

−ρy
) . (10)

The first limit on the right-hand side of (10) is equal to 1. The arguments of both exponential

integrals in the second limit tend to 0 for y → ∞. This implies that both the numerator

and the denominator will tend to +∞ as

E1(z) = −γ − ln z −
∞∑
n=1

zn

n · n!
(11)

(see, for example, Abramowitz and Stegun 1964: 229), where γ ≈ 0.577 is the Euler-

Mascheroni constant. Applying L’Hôpital’s rule yields
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lim
y→∞

E1

(
a0
b
e−ρy

)
E1

(
a0
b−ρ e

−ρy
) = lim

y→∞
exp

{
a0ρ

b(b− ρ)
e−ρy

}
= 1 (12)

As a result, for y →∞

eC0 (y)

eP0 (y)
−→ b

b− ρ
=

1

1− ρ
b

=
1

1− ėP0 (y)
. (13)

Finally, differentiating (9) with respect to y, we get

ėC0 (y) =
ρ

b− ρ

(
exp

{
− 2 a0
b− ρ

e−ρy
}

+ e−ρy a0 e
c
0(y)

)
, (14)

which implies for y →∞

ėC0 (y) −→ ρ

b− ρ
=

ρ/b

1− ρ/b
=

ėP0 (y)

1− ėP0 (y)
(15)

Q.E.D.

3 History and related results

Linearly increasing period life expectancy for the best-practice country from 1840 to present

was detected by Oeppen and Vaupel (2002). One of the possible models that yields constant

increase per time unit is (1), introduced by Vaupel (1986). Goldstein and Wachter (2006)

discussed the latter as a special case of Linear Shift Models (ρ/b = r), under which the hazard

rate at every age x in year y is given by the hazard rate at a younger age x − ry, r > 0,

y years earlier: µ(x, y) = µ(x − ry, 0). Wilmoth (2005) discussed the relationship between

period and cohort mortality by comparing different mean life span measures in general model
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settings. Without specifying any functional interrelationship, Schoen and Canudas-Romo

(2005) compare period and cohort life expectancy in the Gompertz proportional hazards

framework with different shapes exp{−f(y)} of mortality progress over time y, including

f(y) = exp{−ry}, specified in (1). Canudas-Romo and Schoen (2005) study a Siler model

with two different (constant) rates of mortality decline: one for infant and one for non-infant

mortality. This model converges with time to 1 as levels of and improvements in infant

mortality become negligibly small. Canudas-Romo and Schoen (2005) quantify the gaps and

lags between period and cohort life expectancy over time in terms of the model parameters.

In this paper, within the framework of Gompertz proportional hazards (1), we express in a

simple functional form the relationship between period and cohort life expectancy as well as

between their (constant) rates of change. The two relationships are approximate and do not

depend on model parameters as it is the case in Canudas-Romo and Schoen (2005). Eq. (13)

suggests that we can link period to cohort life expectancy by the following approximation

eC0 (y) ≈ eP0 (y)

1− ėP0 (y)
, (16)

whereas (15) implies that

ėC0 (y) ≈ ėP0 (y)

1− ėP0 (y)
(17)

Note that for y →∞

exp

{
−a0ρ
b(b− ρ)

e−ρy
}

= 1− a0ρ

b(b− ρ)
e−ρy + o(e−ρy)

and, following (11),
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E1

(
a0
b
e−ρy

)
E1

(
a0
b−ρ e

−ρy
) = 1 +

E1

(
a0
b
e−ρy

)
− E1

(
a0
b−ρ e

−ρy
)

E1

(
a0
b−ρ e

−ρy
) =

= 1 +
ln b− ln(b− ρ) + a0ρ

b(b−ρ) e
−ρy + o(e−ρy)

−γ − ln a+ ln b+ ρy − a0
b−ρ e

−ρy + o(e−ρy)
,

which implies that for a0 = 0.00001, b = 0.14, and ρ = 0.027, formula (16) overestimates

eC0 (y) by 2.12%-2.39% for y = 1, 2, . . . , 100. Relationship (16) is sensitive with respect to

mortality progress. For instance, if ρ = 0.01, keeping all other parameters as before, we get

an overestimate by 0.7%-0.8%. Lower a0 and higher b increase the accuracy in (16).

Relationship (17), though underestimating cohort life-expectancy increase, is much more

accurate that (16). Note that for y →∞

ėC0 =
ρ

b− ρ

(
1 + a0 e

−ρy
(
− 2

b− ρ
− γ − ln a+ ln b+ ρy

)
+ o(e−ρy)

)

For a0 = 0.00001, b = 0.14, and ρ = 0.027, the error in formula (17) is just between

4.05× 10−6 and 8.47× 10−5 for y = 1, 2, . . . , 100.

Formulae (16) and (17) provide a simple approximate relationship between eP0 (y) and eC0 (y),

as well as their rates of change. The two major assumptions under which this result has

been derived are: 1) the same yearly mortality improvement at all ages, 2) the Gompertz

assumption about the baseline hazard.

The Gompertz assumption about the adult force of mortality can be easily verified by looking

at the logarithm of the unsmoothed mortality surface for Japan, the current life-expectancy

leader (whose almost linear increase in life expectancy in the last decades is well pronounced).

The mortality on a log-scale increases linearly with age in accordance with the exponentially

increasing force of mortality. (Fig. 1)

Fig. 1 shows clearly the significance of age-invariant period effects, especially at older ages
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where the force of mortality is increasingly Gompertz-like. Only one significant cohort effect

can be seen for the cohorts born during the Second World War.

The constant ρ(x, y) = ρ(y) at all ages in a single year y has been verified in numerous studies

including Kannisto (1994), Tuljapurkar et al. (2000) and Bongaarts and Feeney (2003), for

the industrial countries in the second half of the 20th century. In this paper we assume
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Figure 1: Logarithm of the observed force of mortality in Japan, ages 30-95, years 1960-2008
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that ρ is constant not only over age x, but also with time y. Defining the observed rate of

mortality change as

ρ(x, y + 1) = − log
µ(x, y + 1)

µ(x, y)
,

and plotting it in Fig. 2, using again the Japanese data, we do not observe any particular

age or period dependent pattern. The rate of mortality change appears rather to be a cloud

centered around the mean value 0.027. Life-expectancy increase in Japan has not obviously

been one and the same each year: there have been years of decrease followed by years of fast

increase (negative and very high ρ values, respectively). Nevertheless a constant ρ is a good

approximation to the observed mortality processes. The orange points on Fig. 2 show the

interval of one standard deviation distance from the mean. It encompasses 72% of the data.

The purple points (two standard deviations distance from the mean) and the orange points

constitute together 95% of the observed mortality changes.

Fig. 3 shows the density estimate for the observed mortality change in Japan. As the rates

are tightly packed around the mean, they corroborate the notion of age and time-invariant

mortality change.

Using Maximum Likelihood Estimation to obtain the optimal a, b and ρ parameters can help

visualizing the error made by fitting a Gompertz model to Japanese mortality surface for

ages 30-95m years 1960-2008. Fig. 4 shows the Q-Q plot for year 2008. If we compare the

observed and expected distribution of ages at death, it can be seen that for ages under 50 the

Makeham term would still have a significant effect and the Gompertz model underestimates

the number of deaths. However, for older adult ages the Gompertz model predicts the age-

specific number of deaths accurately even if we use a unique age and time constant mortality

decline parameter for the whole mortality surface.

We derived (16) by using (7). The latter can be used to calculate life expectancy gains

GLE(x, y) at every age x in each year y:
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Figure 2: Observed rate of mortality change in Japan, ages 30-95, years 1960-2008. Orange
band designates the ρ values that fall into the mean ± standard deviation. The ρ values in
the purple band are in the mean ± two standard deviations interval.
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Figure 3: Density of observed rate of mortality change in Japan, ages 30-95, years 1960-2008
pooled together.
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Figure 4: Q-Q plot of observed and expected ages at death for Japan ages 30-95 in 2008.
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GLE(x, y) =
de0(y)

dy
=
a0 ρ

b
e−ρy(ebx − 1) exp

{
−a0
b
e−ρy(ebx − 1)

}
. (18)

Moreover, the age at which the maximal gains in eP0 (y) occur can be easily calculated as

x∗(y) =
dGLE(x, y)

dx
=

ln(b+ e−ρya0) + ρy − ln a0
b

. (19)

Note that the age x∗(y) at maximal gains in life expectancy shifts almost uniformly (y →∞)

over time at a pace of

dx∗(y)

dy
=
ρ

b
. (20)

Thus the shift of x∗(y) by periods (see Fig. 1) asymptotically (y → ∞) equals the rate of

change in life expectancy at birth.

4 Applications

A proportionally changing force of mortality leads to linearly shifting distribution of person-

years gained by periods. In case of cohorts, this linear shift expands over time. Based on

this relationship, cohort life expectancy at birth can be represented in terms of period life

expectancy at birth and its increment. A similar representation applies to the rate of change

in cohort life expectancy at birth.

Relationships (16) and (17) provide an approximate estimate of how period gains in life

expectancy are transformed on a cohort basis. Consider individuals that were born in 2010

in a country with a period life expectancy at birth equal to 80 years. In this country, assume
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Figure 5: Change in the force of mortality and distribution by ages of years gained by
constant period life expectancy at birth increase

that (i) there is a constant 2.5-year increase in life expectancy per decade (as in Oeppen and

Vaupel 2002) and (ii) the force of mortality follows a Gompertz curve with constant yearly

deceleration rate ρ. In a period perspective, this would mean that during their childhood

and young adulthood these individuals gain additional six hours of life every day (Vaupel

2009: 352). Throughout the life course this gain shrinks because there are less remaining

years, in which mortality can improve. In order to claim that individuals gain six hours a

day in their infancy, one has to assume that they will experience the same probability of

death, when they turn ten in 2020, as the one for a 10-year-old child in 2010. Similarly,

when they turn 80 in 2090, they would have the same probability to die as a 80-year-old

person in 2010. This assumption should hold on every day (or birthday, depending on the
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measurement units) of their life. However, within our assumptions, mortality improves in

such a way that individuals aged 80 in 2090 would have the same probability to die as a

60-year-old person in 2010.

In a cohort view, when we account for the ever changing mortality regime, we can see that

these life expectancy gains are not negligible. Individuals in this country will have a (cohort)

life expectancy of 103.92 years. If we do not correct for overestimation, our result will be

80
1−0.25 = 106.67 years. Individuals born ten years later will have life expectancy, which will

be higher by 2.5
1−0.25 = 3.33 years. Thus 2.5-year life expectancy gains per decade on a period

basis correspond to approximately 3.3-year life expectancy gains per decade on a cohort

basis.
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Figure 6: Distribution by ages of person-years gained

Fig. 6 shows an example of changes in person-years lived in an age interval between two

consecutive periods. Using the data from the Human Mortality Database, we chose Japan

females for demonstration. As life expectancy at birth augmentation over time is not constant

even in Japan, we drew person-years lived changes from one period to another to the same
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scale and removed six years when life expectancy at birth was lower than in the previous

year. The resulting age distribution of person-years gained and the movement of the curve

resembles to the one predicted by the model (see Fig. 5).

Life expectancy gains result from the continuous linear shift to older ages in the distribution

of person-years gained. Gompertz proportional hazards models stipulate reduction in the

late middle-age and old-age mortality. Mortality of oldest-old, though, stays unmodified.

However, as time advances, older and older ages benefit more from mortality reduction.
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