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Abstract

Due to the lack of complete registration of deaths in most countries of sub-
Saharan Africa, adult mortality is still measured through ”unconventional” tech-
niques. Among other estimates, those based on sibling survival have long been deemed
implausibly low, but they have received increasing acceptance in recent years. Ac-
cording to some authors, they can provide valuable counterpoints to model-based
estimates, which are typically derived from childhood mortality and standard age
patterns of mortality. This more optimistic view in the literature is partly due to the
work of Gakidou and King (2006). The weighting scheme they suggest to correct for
selection biases in sibling histories has been applied to DHS surveys, and it yields
much higher estimates than previous calculations based on the same data. After
reviewing the main features of this procedure, this paper offers a methodological cri-
tique of its application to DHS data. Microsimulations are used to demonstrate that
the ”Corrected Sibling Survival” method may substantially overestimate mortality
rates, especially among males.
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1 Introduction

Vital registration systems still cover a small fraction of deaths in most parts of sub-Saharan
Africa (often less than 25%), with the exception of South Africa and Zimbabwe. Owing
to the lack of registration-type data, ”unconventionnal” approaches play an important role
in estimating adult mortality (Hill et al. 2005). Apart from intercensal survival techniques
(Preston and Bennett 1983), such approachs are mostly based on data on survival of close
relatives. But while mothers interviewed in fertility surveys provide first-hand information
on the survival of their children, no equivalent source of data has proven to be fully sat-
isfactory for adult mortality. Three types of data are currently used to elicit information
on adult deaths : (1) orphanhood status, which is collected in both censuses and surveys,
(2) recent household deaths reported by census respondents, and (3) survival of maternal
siblings as collected in large-scale surveys. All such retrospective reports yield levels of
mortality deemed to be underestimates (Gakidou et al. 2004, Timaeus and Jasseh 2004,
Hill et al. 2005).

As a result, one often falls back on estimating adult deaths rates by extrapolating
from child mortality. For instance, for approximately 4 African countries out of 5, the
UN Population Division (UNPD) uses a two-step procedure; the background mortality
is first inferred from a combination of child survival and model life tables (mostly from
the Coale-Demeny system), and the demographic impact of AIDS is factored into the es-
timates by rescaling the mortality rates upward (United Nations 2009). This procedure
yields model-based estimates of all-causes mortality, which are then compared with other
available estimates derived from censuses or surveys. Because of the frequent underreport-
ing of deaths, the empirical estimates typically serve as lower bounds of risks of dying
in adulthood. There is a general consensus that model-based estimates should be a little
higher than those obtained from survival of close relatives. If not, or when important dis-
crepancies are apparent between the estimates, the background mortality underlying the
model outputs is revised and the procedure is repeated until a ”reasonable agreement” is
achieved (United Nations 2005). The World Health Organization uses a similar approach
to produce its own life tables, but with a different age pattern of mortality (a modified
version of the two-parameter Brass logit model) (Murray et al. 2003).

Even though both organizations presumably use the same levels of childhood mortality
as starting points, considerable discrepancies remain between their final estimates of adult
mortality. For instance, in Niger, the female probability of death between ages 15 and 60
(45q15) is estimated at 0.31 by the UNPD for the year 2006, whereas the corresponding
probability is 30% higher according to the WHO (0.44). In a dozen countries, the two
sets of estimates for this female probability 45q15 differ for 2006 by more than 20%. Such
discrepancies arise because both UN and WHO procedures share similar and well-known
limitations. Firstly, the estimates are overly sensitive to the choice of the model life tables,
let alone the fact that these models predominantly reflect the historical experience of non-
African countries. The development of standard age patterns of mortality from African
data is only in its early stages (Sankoh et al. 2006). Secondly, it is well established that age
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patterns of mortality vary markedly across countries. Childhood and adult deaths risks are
thus less correlated in practice than one assumes when combining summary indices of child
mortality to a few model life tables (Bradshaw and Timaeus 2006). Thirdly, in countries
severely affected by HIV-aids, the cornerstone of the estimation of adult mortality is the
calculation of AIDS deaths. This calculation is of considerable complexity and involves
numerous assumptions about past trends of HIV prevalence, trends in the distribution of
infections by age and sex, length of survival time after infection, or access to antiretroviral
therapy (ART). Finally, in the most affected countries, population dynamics are so inter-
twined with the course of the HIV-epidemic that it has become increasingly problematic
to make no-aids counterfactual scenarios (Heuveline 2003). For instance, the construction
of a life tables net of AIDS entails the estimation of reasonably precise risks of dying in
childhood, which are mainly obtained from fertility histories in DHS data. But even those
estimates are prone to bias because of the correlation between deaths of mothers and young
children (Hallett et al. 2010).

In this context, it is crucial to evaluate the reliability of empirical estimates used to
check the plausibility of model results. In recent years, data on sibling survival, which
are collected as part of a maternal mortality module in DHS surveys, have provided a
counterpoint to model-based estimates. Starting with the Sudanese DHS conducted in
1990, sibling histories have been included in over 60 African DHS, covering more than 30
countries. Questions about sibling survival are also incorporated in the men’s questionnaire
in about one-fifth of these surveys. Along with Demographic and Health Surveys, sibling
histories are collected in World Health Surveys and in some MICS surveys, even though
the data of these two programs have hardly been analyzed (Obermeyer et al. 2008).

In general, a standardized set of questions is used to list all siblings born to the same
mother by birth order, and then to elicit information about their gender, survival status,
and current age, or age at death and years since death for the deceased. Some additional
questions are aimed at identifying pregnancy-related deaths. A major advantage of sibling
histories is that they provide ”direct” estimates, since the observed number of deaths can
be divided by the corresponding person-years of exposure. When civil registration-type
data are deficient, this the only way occurrence/exposure deaths rates can be computed
for the adult ages at the national level. Indirect techniques are also available, whereby
proportions of surviving siblings are converted into survival probabilities (Timaeus et al.
2001). But the resulting estimates need to be time-located, and current dating procedures
cannot cope with mortality reversals. The direct calculation should therefore be preferred
whenever possible. The main limitation of this direct approach is that sample sizes are too
small to allow for the calculation of age-specific rates by country without introducing some
smoothing. But this can be overcome by merging different surveys in a regression model
to borrow strength from neighboring countries.

Although they are widely collected, readily available, and similar in nature to birth
histories, sibling histories have not been as extensively used. In Sub-Saharan Africa, we
can point to only three papers in which a regression framework was used to produce es-
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timates of overall mortality for different countries (Timaeus and Jasseh 2004, Obermeyer
et al. 2010, Reniers et al. 2011). This contrasts with the profusion of papers exploiting
DHS birth histories. Perhaps one reason for this relatively scant use of sibling histories is
the suspicion that they are plagued with larger recall biases than data on child survival,
because the respondent is more loosely related to the deceased. Even Hill and Trussell
(1977), who first suggested collecting such data, expressed some reservations about their
reliability. One of the problems foreseen was the fact that respondents may not know about
siblings who died before they were born or while they were young. Respondents are also
likely to under-report the deaths of siblings whose whereabouts are unknown. But such
omissions will not affect the direct estimates if the omitted deaths occurred in childhood
or many years prior to the survey. Besides, the extent of under-reporting of adult deaths
can be assessed and partly corrected for. One way to do so is to compare mortality rates
from successive surveys where there is an overlap in reference periods (Timaeus and Jasseh
2004, Obermeyer et al. 2010). Assuming that the extent of recall biases is related to the
time elapsed since the occurrence of deaths, it possible to assess how the completeness
of death reporting changes as the reference period extends farther back in time. In DHS
surveys conducted in sub-Saharan Africa, the completeness of death reporting appears to
decline rapidly as the interval between their occurrence and the survey increases, especially
for brothers. Compared to the 3 years immediately preceding the survey, male deaths are
significantly underreported 3 to 6 years prior to the survey (91%), and past that point, com-
pleteness of death reporting drops to less than 75% (Reniers et al. 2011). Estimates should
therefore be adjusted and deaths rates in the distant past should be treated with caution.
Unfortunately, even in the few years prior to the survey, simple internal data checks are
suggestive of serious recall biases. For instance, reports on the number of years elapsed
since the deaths are affected by heaping at round digits (5 and 10 years prior to the survey)
(Stanton et al. 1997). But a systematic assessment of the quality of sibling histories has
yet to be conducted, because previous work on this issue remains limited, and relies mainly
on aggregate comparisons with UNPD estimates (Gakidou et al. 2004, Stanton et al. 1997).

An issue that has recently attracted more attention is the problem of selection biases.
The work of Gakidou and King (2006) served as a stepping stone to developing a new
method, called ”Corrected Sibling Survival Method” (CSS), applied to DHS data by Ober-
meyer et al. (2010). According to these authors, this method yields levels of mortality that
are around 20 to 30% higher than the estimates obtained without adjustment for struc-
tural biases. Other variants of procedure suggested by Gakidou and King (2006) have been
applied to World Health Surveys and to the Iraq Family Health Survey (IFHS). In this pa-
per, I offer a methodological critique of the ”Corrected Sibling Survival Method”. Sections
2 and 3 present the selection biases affecting sibling histories, and section 4 summarizes
the main features of this CSS method. The adoption of the method is motivated by the
presumption that mortality is associated with sibship size, which I demonstrate is not the
case in adulthood (section 5). Moreover, I argue that failure to fine-tune the weighting
scheme to survey data can translate into a substantial over-estimation of adult mortality
(section 6).
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2 The mathematical demonstration of Trussell and Rodriguez
(1990)

At the outset, it must be noted that sibling histories suffer from three structural limitations:

1. First, groups of siblings (also referred to as sibships) with high mortality are under-
represented because no information is available for sibships without a surviving mem-
ber.

2. Second, low mortality sibships are over-represented because the experience of the
respondent’s siblings is counted multiple times when more than one sibling is inter-
viewed - as is the case in DHS surveys. Obviously, since every eligible women report
about her sibship, some sibships are duplicated in the data.

3. Third, in most of the researches based on sibling histories, the respondents themselves
are not counted in the denominator, which produces upward bias in the mortality
estimates.

Trussell and Rodriguez (1990) have shown mathematically that these three structural
limitations neutralize each other, provided that (1) all siblings in the sampling frame are
interviewed, (2) the experience of the respondents themselves is excluded from the calcula-
tion, and (3) there is no association between mortality and sibship size. In order to make
connections with recent developments, this demonstration is summarized below.

Consider a probability of death p, which is assumed to be independent of n, the sibship
size. The observed number of deaths in each sibship follows a binomial distribution (with
parameter µ = np). If every surviving member is interviewed and if own-reports are not
counted (i.e. the respondents merely report on their siblings), the number of respondents
in each sibships equals (n − x), the number of deceased siblings equals x, and the size of
the sibships considered for the exposure is (n − 1). The proportion of deaths observed in
each sibship (PD) can thus be expressed as below, where f(x) stands for the probability
mass function of the binomial distribution1:

PD =

∑n−1
x=0 x(n− x)f(x)∑n−1

x=0(n− 1)(n− x)f(x)
(1)

Though not elaborated here, Trussell and Rodriguez (1990) show that this can be simplified
into p :

PD =
npq(n− 1)

nq(n− 1)
= p (2)

Thus far, equations have been presented for sibships of size n. To complete the demon-
stration, the distribution of sibship sizes (g(n)) must be taken into account. If N(n) stands

1The probability of getting exactly x successes in n trials is given by :

f(x) = Pr(X = n|n) = n!
x!(n−x)!p

x(1− p)n−x
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for the numerator of equation 1 and D(n) for its denominator, the proportion of observed
deaths amongst all sibships can then be expressed as :

PD =

∑
g(n)

∑n−1
x=0 x(n− x)f(x)∑

g(n)
∑n−1

x=0(n− 1)(n− x)f(x)
=

∑
g(n)N(n)∑
g(n)D(n)

(3)

From equation 2, one sees that N(n) = pD(n). Since p is identical in every sibship, it can
be factorized. Equation 3 thus simplifies into PD = p, which demonstrates mathematically
the cancelling out of the three selection biases mentioned above.

This demonstration can be illustrated with a simple numerical example comparable to
the one presented in Trussell and Rodriguez (1990). In Table 1, 100 sibships are randomly
drawn from a Poisson distribution (with a mean sibship size of 5). If the probability of death
is 0.25 regardless of the sibship size, interviewing every survivor will provide a unbiased
estimate.

1 2 3 4 5 6 7 8 9 10

p 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

N(n) 0.000 0.375 1.125 2.250 3.750 5.625 7.875 10.500 13.500 16.875

D(n) 0.0 1.5 4.5 9.0 15.0 22.5 31.5 42.0 54.0 67.5

nb 3 8 16 25 13 13 12 4 3 3

PD(real) 120.75/483 = 0.25

PD(observed) 426.75/1707 = 0.25

Table 1 – Example with no association between mortality and sibship size, every survivor is inter-
viewed, respondents merely report on their siblings.

By contrast, Trussell and Rodriguez (1990) show that restricting the calculation to only
one sister per sibship will translate into an overestimation of mortality, as can be seen in
Table 2 (p. 7). This bias will be directly proportional to the size of the sibships and to
the level of mortality. On that account, the DHS reports, as well as several papers based
on DHS sibling histories, have not used any kind of weights to correct for selection biases
(Bicego 1997, Gakidou et al. 2004, Timaeus and Jasseh 2004, Reniers et al. 2011). The
common practice has been to derive estimates from all the respondents, regardless of the
fact that some sibships were duplicated in the data. I can point to only one paper in which
one respondent was randomly retained by sibship (de Walque and Verwimp 2010).

More recently, on the presumption that mortality was indeed related to sibship sizes,
another range of papers have adopted a different approach, whereby the experience of the
respondent is included in the calculation, but weights are used to correct for selection
biases. This approach draws on the work of Gakidou and King (2006). We will return to
this new approach in section 4. Before doing so, we extend the demonstration of Trussell
and Rodriguez (1990) to conditions that are more illustrative of DHS survey data.
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1 2 3 4 5 6 7 8 9 10

p 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

N(n) 0.000 0.375 0.703 0.984 1.245 1.499 1.750 2.000 2.250 2.500

D(n) 0.000 0.938 1.969 2.988 3.996 4.999 6.000 7.000 8.000 9.000

nb 3 8 16 25 13 13 12 4 3 3

PD(real) 120.75/483 = 0.25

PD(observed) 117.771/381.635 = 0.309

Table 2 – Example with no association between mortality and sibship size, only one survivor is
interviewed, respondent merely report on their siblings.

3 Insights from microsimulations

The cancelling out shown by Trussell and Rodriguez (1990) is mathematically correct, but
one might wonder whether it would be true in DHS data. In these surveys, only some
siblings are eligible to respond to the sibling module (typically females aged 15 to 49) and
respondents also report on the survival status of siblings of the opposite sex. Moreover,
death risks vary over time, as well as by age and sex. Hence, even if it were correct to
assume that mortality rates are unrelated to sibship sizes, the fact that deaths risks are
drawn from different distributions adds some complexity. To evaluate if the cancelling out
still holds true, a micro-simulation framework is used here.

Micro-simulations are stochastic models in which the unit of analysis are individuals. In
each time step of the simulations, pre-defined vital rates are converted into waiting times
before various events (e.g. deaths, births, marriages and transitions to various groups).
These events are assigned to fictitious individuals. Some models are closed, in a way that
marriage partners are found in the simulated population, as compared to created on an ad
hoc basis for each individual in search of a spouse. This allows keeping track of the kinship
links as they are generated during the simulations. This is the case of SOCSIM, a model
developed in the 1970s at the University of California (Wachter et al. 1997, Murphy 2004).
For our purpose, the model outputs from SOCSIM can be reshaped into sibling histories.
The underlying mortality rates can serve as a ”gold standard” against which to evaluate
mortality rates obtained from sibling survival. The linchpin is the absence of association
between mortality and sibship size.

The distribution of sibship sizes observed in DHS surveys, as well as the age and sex
composition of siblings and respondents are shaped by past trends of mortality and fertility.
To be as close as possible as DHS sibling histories, simulated populations are generated
to mimic the demographic trajectories of 41 countries of Sub-Saharan Africa. The main
features of this set of micro-simulations are discussed below, and full details of the model
are given in Masquelier (2010).

Simulations are calibrated with estimates of the 2008 Revision of the World Popula-

7



tion Prospects (United Nations 2009). Age-specific fertility rates and non-AIDS life tables
are derived from UNPD estimates, and HIV infection rates are computed from UNAIDS
incidences. In its core version, SOCSIM makes no allowance for HIV-aids mortality, but
different transitions rates can be set up from group to group, and each group can face its
own demographic rates. Thus, we model the HIV disease progression as a staged process
from HIV infection to full blown AIDS, allowing for reduced fertility of HIV-positive moth-
ers and vertical transmission. For each country, simulations start in 1900 and they run
under conditions of stability until 1951, at which stage deaths and birth rates start varying
yearly until 2010. The size of the starting population (in 1900) is calculated to yield a
final population of 30 000 surviving individuals in 2010. In order to reduce the random
variability, each run is repeated 10 times, and the final populations are merged by coun-
try. For each run, SOCSIM creates a file with one record per individual who lived in the
population. This file contains identifiers to parents, which permits to reconstruct sibships
born from the same mother. Mortality rates analogue to those estimated from DHS data
can be computed. The underlying mortality rates, as well as other aggregate indicators,
are extracted with event history analysis. For example, Figure 1 compares the relative age
composition of person-years in the simulated populations with the age structure estimated
by the UNPD for Zambia and Botswana, in 1950, 1975 and 2009. It illustrates the good
agreement between simulation outputs and UNPD estimates.

1950 − Zambia

Simulations
UN WPP08

1975 − Zambia

Simulations
UN WPP08

2009 − Zambia

Simulations
UN WPP08

1950 − Botswana

Simulations
UN WPP08

1975 − Botswana

Simulations
UN WPP08

2009 − Botswana

Simulations
UN WPP08

Figure 1 – Relative age composition of the simulated populations and age structures estimated by
the UNPD - Zambia and Zimbabwe - 1950, 1975, 2009

The quantity of interest is the probability of death between ages 15 and 60 (45q15). Nei-
ther the age pattern nor the time trend of mortality are modeled here. Adult deaths are
simply divided by the corresponding person-years of exposure, and the age-specific deaths
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rates are then converted into 45q15. To obtain sibling histories, each sibship is repeated
in the file once for each member who survives and is eligible to the maternal mortality
module. As in DHS reports, the respondents are not counted for computing the exposure.
But unlike DHS data, every eligible individual is interviewed, as if a census was con-
ducted. This is because the siblings are not organized in households, and it would require
considerable ingenuity to replicate a DHS sampling procedure from the simulation outputs.

Taking as an example the case of a simulated population resembling Mozambique, and
a census conducted in 2010, four different scenarios are presented in Figure 2, depending on
the age range considered for eligibility (all ages versus 15-49 only) and the sex of respondents
(females only versus both sexes):

• Scenario A : all individuals surviving at the end of the simulation provide information
about their maternal siblings (thus totaling 300 000 respondents),

• Scenario B : individuals aged between 15 and 49 are eligible (both sexes),

• Scenario C : only females provide information on their sibships (regardless of their
age),

• Scenario D : women of reproductive age are the only eligible respondents, as in most
DHS surveys.

For the decade preceding the fictitious census, the sibling estimates are close to the
underlying mortality rates, in each of the four scenarios (Fig.2, p. 10). Note that when the
sibling histories are gathered from adults only (scenarios B and D), the scatter around the
estimates is higher in the more distant past. This is because the number of siblings aged
15 to 59 of respondents aged 15 to 49 diminishes rapidly as the reference-period extends
further back in time. The accuracy of the sibling estimates can be measured by drawing
samples of respondents among the population of eligible survivors. With approximately
8000 adult female respondents, as in DHS surveys, the random variation would be increased
in such a way that the percent root mean square error (RMSE/mean) would exceed 25%
ten years prior to the survey (results not shown here). Along with the important under-
reporting of deaths mentioned above, this confirms it would be unwise to use DHS sibling
estimates to investigate mortality trends more than 10 years prior to the survey.

Coming back to the more recent periods, Fig.2 illustrates that the cancelling effect of
selection biases remains true even though mortality varies overtime and differs by sex, and
when females aged 15 to 49 are the only ones to be interviewed. As expected, the male
mortality rates can be properly estimated from females, because :

1. counting or not counting the respondent in the exposure has no effect, because the
calculations refers to individuals of the opposite sex.

2. sibships with low female mortality are underrepresented in the data relative to broth-
ers (and vice versa), but this does not introduce a bias, since we assumed that deaths
risks are not associated with sibship sizes.

3. for the same reason, the fact that some sibships have no surviving sister to report on
them does not distort the estimation of male mortality rates (and vice versa).
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Figure 2 – Probabilities of death between age 15 and 60 estimated from simulated populations
(lines) and re-estimated from sibling histories (points) - microsimulations - Mozambique

The next section introduces the alternative calculation, called the ”Corrected Sibling
Survival Method”, which originates from the work of Gakidou and King (2006). We will
return later to microsimulations when this alternative method will be applied to simulated
sibling histories.

4 Association between sibship size and mortality

In the event that death risks do vary with sibship size, the standard calculation will pro-
duce either an underestimate or an overestimate2. A positive correlation between sibship
sizes and mortality will translate into an overestimate, because larger sibships facing less

2Going back to equation 3, we see that the probabilities p(n) cannot be factorized when they differ by
sibship size. Since N(n) = D(n)p(n), the standard calculation will give a weighted mean of the probabilities
p(n), with weights being the product of the distribution of sibships sizes by the number of siblings observed
(g(n)D(n)). The correct calculation would be to take the weighted mean of the probabilities p(n), with
weights being the product of the distribution of sibship sizes by the sibship sizes (g(n) n):
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favorable mortality rates will be oversampled. Again, this can be illustrated with a simple
numerical example. In Table 3, probabilities of deaths range from 0.03 to 0.075 according
to the sibship size, and the mortality is overestimated by more than 7%.

n 1 2 3 4 5 6 7 8 9 10

p 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075

N(n) 0.000 0.068 0.230 0.516 0.950 1.559 2.369 3.403 4.687 6.244

D(n) 0.00 1.93 5.76 11.46 19.00 28.35 39.48 52.36 66.96 83.25

nb sib. 3 8 16 25 13 13 12 4 3 3

PD(real) 25.87/483 = 0.054

PD(observed) 124.574/2143.48 = 0.058

Table 3 – Example with a positive association between sibship size and mortality, every survivor
is interviewed, respondent merely report on their siblings.

To correct for this, Gakidou and King (2006) (henceforth GK) propose a correction
procedure which is twofold. The first step is to weight the data, in order to recover deaths
rates for sibships where there remains at least one surviving respondent. The second step
relies on extrapolation and aims at correcting for the ”zero-survivor bias”, namely the fact
that some sibships are not observed at all because no one survived.

4.1 Weighting scheme of Gakidou and King (2006)

The key idea of the GK procedure is to give less weight to sibships where many siblings
survived, by computing family-level weights of the form Bi/Si, where Bi is the number
of siblings of individual i at the start of the observation period, and Si is the number of
surviving siblings at the time of the survey. A crucial point is that respondents are included
in the calculation, both to compute Bi and Si, as well as to compute the exposure. Another
important point, but hitherto mostly overlooked, is that these Bi/Si weights are designed
to be applied to proportions of dead siblings reported by each survivor i.

To link this to previous equations, the average proportion of dead siblings reported by
each survivor can be reformulated in the notation used by Trussell and Rodriguez (1990).
If m individuals survived to the survey (i = 1,. . . , m), this average can be expressed in two
equivalent ways :

PD =

∑
g(n)N(n)∑
g(n)D(n)

=

∑
g(n) [D(n)p(n)]∑
g(n)D(n)

=

∑
g(n) [n(1− p(n))(n− 1)] p(n)∑

g(n)n(1− p(n))(n− 1)

6=
∑
g(n) [p(n)n]∑
g(n)n

(4)

From Equation 4, we see that the standard calculation will give more weights to larger sibships (through
n− 1) and to sibships with lower mortality (through 1− p).
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∑m
i=1(Bi − Si)/Bi

m
=

∑
g(n)

∑n−1
x=0

x
n
(n− x)f(x)∑

g(n)
∑n−1

x=0(n− x)f(x)
(5)

Without weights, this is clearly a biased estimate, as can be seen in Table 4. Note
that in this case, the positive association between mortality and sibship size does no longer
translate into an overestimate (as in Table 3), because the computation is different. The
death rates obtained here are all underestimates, and the underestimation is larger in
smaller sibships, because the chances that no one survives are higher in these sibships.

n 1 2 3 4 5 6 7 8 9 10

p 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075

N(n) 0.000 0.034 0.077 0.129 0.190 0.260 0.338 0.425 0.521 0.624

D(n) 0.97 1.93 2.88 3.82 4.75 5.67 6.58 7.48 8.37 9.25

nb 3 8 16 25 13 13 12 4 3 3

PD(real) 25.87/483 = 0.054

PD(observed) 19.77/457.13 = 0.043

Table 4 – Average of the proportion of dead siblings reported by each survivor, respondents are
included in the calculation.

The deaths rates in sibships with a least one survivor can be recovered by weighting
the average proportion of dead siblings by Bi/Si (or n/(n − x) in the previous notation).
If Di stands for the number of dead siblings, we obtain :∑m

i=1 Di/Bi ×Bi/Si∑m
i=1Bi/Si

=

∑
g(n)

∑n−1
x=0 x f(x)∑

g(n)
∑n−1

x=0 n f(x)
(6)

n 1 2 3 4 5 6 7 8 9 10

p 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075

N(n) 0.000 0.068 0.120 0.180 0.250 0.330 0.420 0.520 0.630 0.750

D(n) 0.970 1.998 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

nb 3 8 16 25 13 13 12 4 3 3

PD(real) 25.87/483 = 0.054

PD(observed) 25.764/482.894 = 0.053

Table 5 – Weighted average of the proportion of dead siblings reported by each survivor, respondents
are included in the calculation.

Table 5 shows that the observed proportion is now very close to the real probability
of death, the difference being entirely attributable to the omission of sibships without sur-
vivors. This constitutes the first part of the GK correction procedure. The remaining
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”zero-survivor bias” will be discussed in section 6.

The work of GK is an important step toward a better understanding of selection bi-
ases that could potentially plague sibling histories. But problems arise when it is not
fine-tuned to survey data. To date, this weighting mechanism has been applied to a large
range of surveys, including Demographic and Health Surveys, World Health Surveys, the
CDC’s Reproductive Health Surveys, and the Pan Arab Project for Family Health surveys
(Obermeyer et al. 2008; 2010, de Walque and Verwimp 2010, Rajaratnam et al. 2010, Iraq
Family Health Survey Study Group 2008). The higher mortality rates obtained have been
endorsed in a paper recently published in the Lancet, in which new estimates of worldwide
adult mortality are presented (Rajaratnam et al. 2010). A review of levels and trends of
maternal mortality also makes indirect use of this weighting, by computing proportions of
deaths attributable to maternal causes from DHS and applying these proportions to sibling
estimates of all-causes mortality (Hogan et al. 2010).

Interestingly, the weights used in these different applications are only partly standard-
ized, although this lack of consistency has not been noted in the literature. One aspect
of the GK paper that seems to cause confusion is the computation of weighted averages
of proportions of dead siblings per survivor. This is what DK call ”family mortality rates
at the individual level for all individuals in the population”. In that case, the weights
should indeed take the form Bi/Si, as shown above. But the standard practice with sibling
histories is to reshape the original files containing one observation per respondent into files
containing one observation per sibling. The death rates are then obtained by dividing the
observed deaths by the corresponding person-years of exposure, regardless of the sibships
they come from. But if the data are to be analyzed at the sibling level, as compared to the
sibship level, the weights should take the form 1/Si, and not Bi/Si. This can be seen from
equation 7, which reduces to equation 6 :∑

g(n)
∑n−1

x=0 x [(n− x)/(n− x)] f(x)∑
g(n)

∑n−1
x=0 n [(n− x)/(n− x)] f(x)

=

∑m
i=1Di/Si∑m
i=1 Bi/Si

(7)

Apart from the GK paper introducing the weighting scheme, no applications of this
weighting has computed ”family mortality rates”. But several papers have used Bi/Si

weights in person-period files, which seems to be an incorrect application of the GK weights
(Obermeyer et al. 2008; 2010, Rajaratnam et al. 2010).

Perhaps more problematic is the fact that most papers applying this weighting scheme to
survey data do not discriminate between adult siblings and siblings who died in childhood,
and do not compute sex-specific weights. Bi is computed as the ”original sibship size”,
that is, all children born from the same mother, and Si is computed as the total number of
surviving siblings at the time of the survey. This is clearly inappropriate since the sibling
histories are collected from adults only, typically from women of reproductive age. GK
warned that their procedure requires asking respondents about relatives of the same group
(i.e. males aged 40-44 about males siblings age 40-44), unless considerable adaptation
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is made to the weighting mechanism. But this has been overlooked in most practical
applications, including by GK themselves when they use DHS data. We will show in the
next section that these two errors (the use of Bi/Si weights and the inclusion of all siblings)
translate into larger biases than those arising from selection.

To our knowledge, the only appropriate use of the GK weights has been made by the
Iraq Family Health Survey Study Group (2008). These authors weighted both sibling
deaths and person-years lived by respondents’ siblings by the inverse of the number of
female siblings aged 15-49 and alive at the time of the survey. But as will be shown later,
when applied to DHS data, an adjustment of this kind yields estimates that are slightly
under the unadjusted estimates. This is because adult mortality rates are not correlated
with adult sibship sizes, contrary to assertions in the literature.

5 Is the standard calculation biased ?

GK contend that sibship sizes are strongly and positively correlated with mortality in
DHS data. They estimate a weighted proportion of dead siblings by sibship size and
compute correlation coefficients between sibship sizes and this index of mortality. With the
same sample of DHS surveys, we replicate their calculations and present the correlations
in the third column of Table 6 (ρ1)3. According to GK, ”[These results] demonstrate
unambiguously that mortality is not empirically independent of sibship size, as the standard
estimator assumes. (p. 579)”

When considering the sign of the correlations, we should conclude that the standard
calculation will undoubtedly overestimate mortality : sibships facing higher mortality risks
will be oversampled since the deaths risks apparently rise with sibship sizes. Yet, according
to Obermeyer et al. (2010), the reverse holds true4. Indeed, they argue that their adjusted
estimates of 45q15 are on average 27% higher than standard estimates.

How could this apparent contradiction be explained ? The explanation we suggest is
twofold. First, the positive correlation between proportions of dead siblings and sibship
sizes stems from structural effects such as fertility declines, and this correlation vanishes
when restricting the sample to adult siblings and adult deaths. Secondly, because it is not
tailored to characteristics of DHS data, the Corrected Sibling Survival Method will lead to
overestimates.

Consider first the GK correlations. If the fertility declined over the last decades, the
size of the sibships will be positively related to the age of the respondent, and thus to the
probability of death of her siblings. Hence, a positive correlation between sibship size and

3Levels of significance : . p ≤ .10; *p ≤ .05; **p ≤ .01; ***p ≤ .001. Respondents under 25 are excluded
because their mother have not necessarily terminated their reproduction period. Sibships of more than
10 members are excluded from the calculation. For the sake of precision, it is worth noting that these
correlations are obtained from deaths rates corrected for the zero-survivor bias. The correlation without
this correction are presented in the fourth column (ρ2) of Table 6. These unadjusted correlations are
logically higher, since the adjustment is more important in smaller sibships.

4”Underrepresentation of high mortality sibships is an important consideration when analyzing sibling
survival data” (p.6)
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Country Year ρ1 ρ2 p-values (ρ2)
1 Benin 1996 0.95 0.97 ***
2 Burkina Faso 1999 0.95 0.97 ***
3 Cameroon 1998 0.75 0.81 **
4 Chad 1997 0.93 0.96 ***
5 Côte d’Ivoire 1994 0.75 0.89 **
6 Ethiopia 2000 0.71 0.90 ***
7 Guinea 1999 0.80 0.97 ***
8 Madagascar 1997 -0.19 -0.16
9 Mali 1996 0.86 0.97 ***

10 Nigeria 1999 0.93 0.96 ***
11 Togo 1998 0.74 0.92 ***
12 Uganda 1995 -0.06 0.33
13 Tanzania 1996 0.82 0.93 ***
14 Zambia 1996 0.47 0.73 *
15 Zimbabwe 1994 0.76 0.85 **
16 Zimbabwe 1999 0.69 0.67 *

Table 6 – Correlations between sibship sizes and mortality DHS surveys (calculations replicated
from GK) [. p ≤ .10; *p ≤ .05; **p ≤ .01; ***p ≤ .001.]

mortality will be observed. The same will be true if mortality has declined overtime. But,
from this, it does not follow that the standard calculation is biased, as we have seen in
section 3.

To show that the strong correlations identified by GK are spurious, we apply the cal-
culations used to produce Table 6 to micro-simulated populations. As mentioned above,
in these simulations, there is no association whatsoever between sibship size and mortality,
and the standard calculation works fine. And yet, we observe very high correlations as in
DHS data (Table 7).

It is important to realize that the only association which could potentially affect the
estimates is an association between adult mortality and the number of potential adult
respondents (typically the total of surviving sisters aged 15 to 49). Up to the present, there
is no evidence of such association in DHS data. We can, however, refine the calculations
made by GK to restrict them to adults. In order to do so, we fit a Poisson regression
model to the observed deaths, including exposure time as an offset parameter, and the
number of adult surviving sisters at the start of the observation period (Bi) as a covariate.
To create a homogeneous cohort, we retain only women who were still alive 10 years prior
to the survey and were aged 20 to 39 years at that time. Brothers are dropped from the
calculations, as well as sisters of respondents under 30. The period under observation and
the corresponding ages are illustrated in the Fig.3 via a Lexis diagram. In this example,
four sisters survived to 1990, and two of them died during the reference period. The sister
who died at age 24 shortly before 1990 is not counted. The ”adult sibship size”, which is
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Country ρ1 ρ2 p-values (ρ2)
1 Benin 0.29 0.56
2 Burkina Faso 0.77 0.86 **
3 Cameroon 0.75 0.85 **
4 Côte d’Ivoire 0.66 0.91 ***
5 Ethiopia 0.24 0.71 *
6 Guinea 0.69 0.84 **
7 Madagascar 0.58 0.70 *
8 Mali 0.15 0.82 **
9 Nigeria 0.33 0.75 *

10 Uganda 0.27 0.67 *
11 Tanzania 0.76 0.80 **
12 Chad 0.17 0.44
13 Togo 0.28 0.52
14 Zambia 0.56 0.84 **
15 Zimbabwe 0.91 0.95 ***

Table 7 – Correlations between sibship sizes and mortality - microsimulations [. p ≤ .10; *p ≤ .05;
**p ≤ .01; ***p ≤ .001.]

Bi, will be 4. The older sister (who is the respondent) is not included in the person-years,
and the only weights used are the sample weights.

To control for variations of mortality overtime, we use a simplified version of the Timaeus
and Jasseh (2004) model, whereby the overall mortality level follows a log-linear trend and
a standard mortality pattern is introduced to smooth the non-AIDS component of the
mortality5. The age pattern of mortality is assumed to be fixed until 4 years after HIV
prevalence reaches 1%. At that time, this age pattern is allowed to change along with the
duration of the epidemic. However, unlike the model of Timaeus and Jasseh (2004), this
model is fitted for each DHS survey separately. The age of respondents is included as well,
because we suspect that older respondents (whose sibship sizes should be higher) tend to
underreport deaths more frequently than younger respondents (Stanton et al. 2000). More-
over, we use a quasi-poisson model to account for overdispersion.

A likelihood ratio test is performed for the available African DHS with sibling histories6,
comparing the model including the sibship size Bi and the model without. The p-values of
these tests are presented in Table 8 (p. 18). In 50 DHS surveys out of 57, female mortality
between ages 20 and 49 does not appear to be significantly associated with the number of
surviving sisters at the start of the observation period. Still, this is the case in 7 surveys,
and the puzzling fact that Kenya and Mozambique account for 5 of these cases deserves
more attention. But in any case, it seems premature to assert the standard calculation

5We use the General model of the United Nations Life Tables for Developing Countries (1982). See also
note 7, p. 19 for a condensed description of the model.

6We use the anova command in R, after fitting the model with glm.
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Figure 3 – Selection of sisters included in the regression model : Green periods are included in
computation of deaths and person-years, whereas orange periods are excluded.

systematically provides biased estimates. Under most circumstances, this is unlikely not
be the case.
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6 Does the corrected method perform better ?

As we mentioned above, a prudent approach would probably be to derive estimates in two
different ways : with the ”standard approach”, and with weights similar to the one used
by GK, but restricted to adults. We will call the former ”standard estimates”, the latter
”adjusted estimates”. At this stage, we retain only the first part of the GK correction,
which is by far the most important. Thus we make no attempt to estimate the number of
deaths in sibships without survivor, an awkward task that is discussed in the next section.
Consequently, if the standard calculation was unbiased, it should yield death rates that are
a little higher than the adjusted rates, because the latter does not encompass deaths in
sibships where everyone died.

In order to be able to isolate the effect of the weighting, we fit two Poisson regression
models that differ only by the weights used (the respondents are excluded in the case of the
standard calculation). Once again, we borrow the model developed by Timaeus and Jasseh
(2004) and apply it to African DHS histories, this time pooling all the available datasets
together7. Estimates of the probability 45q15 obtained with the standard calculation are
presented by country on pages 28-298.

In the left graph of Fig.4, the standard estimates are compared with the adjusted es-
timates, obtained by weighting both deaths and person-years of exposure by the inverse
number of potential surviving respondents. That is, the weights take the form 1/Si, where
Si stands for the number of surviving sisters aged 15 to 49 at the time of the survey9. This
is the weighting used by the Iraq Family Health Survey Study Group (2008), and it seems
to be the best way to translate the GK weights to DHS data at the individual level. As
we anticipated, adjusted estimates are lower than standard estimates. The median of the
ratio of adjusted to standard values of 45q15 is 0.92 for males (with an interquartile range of
0.10) and 0.85 for females (with 0.13 as interquartile range). As mentioned above, this can

7The model can be expressed as :

ln(µ(x, g, i, t)) = β0 + β1(g, i) + β2(g, i)t+ β3(i)ln(µs(x̄, g))

+
{

(β4(i) + β5(x̄, g)) (t− Ti) + β6(i)(t− Ti)2I(i ∈ S)
}

I(t > Ti)I(x ≥ 20)

(8)

The overall mortality level and sex differences are allowed to vary by country (β1), and background mortality
follows a log-linear trend (β2). A model age pattern is introduced to smooth the non-aids component of
mortality (β3). The corresponding coefficient is specific to each country, but is not assumed to be time-
dependent. The level of mortality is allowed to rise 4 years (Ti) after the HIV prevalence reaches 1% (β4).
A change in the age pattern of mortality due to HIV is also introduced, and we assume it varies from region
to region (β5). A quadratic term is added for a subset of countries (S) with a stalling or decreasing HIV
prevalence (β6). Note that data for periods prior to nine completed years before the survey are discarded.
A more elaborated discussion of this model is provided in Reniers et al. (2011) and Timaeus and Jasseh
(2004).

8It is worth noting that estimates used in Fig.4 are not adjusted for underreporting of deaths, whereas
values of 45q15 in the Appendix are adjusted.

9When the data come from men’s reports, the weights are adjusted consequently.
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Figure 4 – Comparison of 45q15 for 1990, 1995, 2000 and 2005, obtained from sibling histories
collected in Sub-Saharan Africa, with the standard calculation (x-axis) and with two kinds of
applications of the GK weighting scheme (y-axis).

be partly explained by the lack of information on sibships with no surviving member aged
15 to 49 at the time of the survey. To say the least, a revised version of the GK procedure
does not yield higher estimates than the standard approach.

From this, we draw the inference that the high levels of mortality obtained in recent
applications of the GK mechanism most likely stem from failure to adapt the weights to
survey data (Obermeyer et al. 2010, Rajaratnam et al. 2010). As a matter of fact, the right
graph of Fig.4 displays the same comparison, when applying weights of the form Bi/Si and
including all siblings in the computation of these weights, irrespective of their sex and age.
Adjusted values of the female probability 45q15 are in line with standard values, but it does
not mean the two calculations are equivalent, because the former would then be adjusted
upward to account for the ”zero survivor bias”. Since Obermeyer et al. (2010) evaluate this
adjustment at approximately 0.2% to 4.0% on the 45q15 probabilities, the overestimation
of female mortality is apparently modest. However the adjusted values of the male 45q15

probabilities are on average 28% higher than the standard estimates (with an interquartile
range of 12%). This is a substantial overestimate.

This point is buttressed by microsimulations outputs. Figure 5 illustrates the impact of
applying the same Bi/Si weights to the population resembling Mozambique that we used
previously (p.10). As expected, the weights work well in the first scenario, in which all
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survivors are interviewed10. But when women of reproductive age are the only ones to
be eligible (scenario D), adjusted sibling estimates follow the pattern observed with DHS
surveys. Female mortality is slightly over-estimated (because further adjustment would be
made for the zero-survivor bias), whereas male mortality is substantially over-estimated.
In this case, the relative error made since 2000 averages 18%.
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Figure 5 – Probabilities of death between age 15 and 60 estimated from simulated populations
(lines) and re-estimated from sibling histories with the CSS method (points) - microsimulations -
Mozambique

It is noteworthy that Obermeyer et al. (2010) do not mention a gender-differentiated
effect of the weighting they use. Indeed, when comparing our estimates with those dis-
tributed by the authors, we find they obtain higher estimates for both sexes. This is
presented in Fig.6. Both series are final estimates that incorporate some adjustment for
underreporting of deaths. On average, their estimates of the female 45q15 are 13% higher
than ours, whereas the relative difference for males is as high as 20%. The CSS method

10Once again, the small difference between sibling estimates and underlying deaths risks is due to the
zero-survivor bias.
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seems to increase sex mortality ratios, although not as much as Figures 4 and 5 might
suggest.
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Figure 6 – Comparison of 45q15 for years 1985:2004, obtained from sibling histories collected in
Sub-Saharan Africa: our estimates (x-axis) and estimates obtained by Obermeyer et al. (2010)
(y-axis).

Unfortunately, the computation of adult deaths rates from sibling histories entails con-
siderable data processing and we were not able to replicate their estimates. In this last
comparison, it is thus difficult to disentangle the relative contributions of different correc-
tions made to the raw rates. For instance, their female estimates include an adjustment
factor for the zero-survivor bias surrounded by uncertainties, even if it remains modest. We
are also comparing results from two different models, since they use a logistic regression
framework, capturing the trends in 5-years blocks. The model age patterns used to smooth
the data are also different. More anecdotally, in 6 DHS out of 10 in Sub-Saharan Africa,
the sibship sizes of respondents who are the only child are coded as missing, and not as
zero. In these cases, Obermeyer et al. (2010) discard the observation. This is likely to
translate into a slight overestimation of female mortality11.

11For instance, the proportion of respondent who are the only child is highest in Congo-RDC, where it
reaches 5%.
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7 The challenge of estimating deaths occurring in ”zero-
survivor” sibships

When one wishes to refine the GK mechanism to be applied to survey data, then arises
the problem of estimating the number of deaths in sibships without survivors. There are
currently two approaches to do so. The first one relies on extrapolation from a regression
model while the second one is based on distributional assumptions.

GK offer an elaborated discussion of the first approach. To sum it up, the key idea
is to extrapolate the number of deaths in sibships without survivor from the number of
deaths in sibships with at least one survivor. This number, noted ζ, is added to both the
numerator and denominator of Equation 6, so that it is now expressed as :∑m

i=1Di/Si + ζ̂∑m
i=1Bi/Si + ζ̂

=

∑
g(n)

[∑n−1
x=0 x f(x)

]
+ nf(n)∑

g(n)
[∑n−1

x=0 n f(x)
]

+ nf(n)
(9)

In order to estimate ζ, they propose a regression model whereby the number of observed
deaths is regressed on the number of surviving siblings (s = 1, 2, 3. . . ). This model is then
used to extrapolate back to the case where s = 0. GK discuss various approaches and
eventually retain a quadratic fit of the log of the absolute number of observed deaths
versus the number of survivors, as shown in Equation 10. A transformation12 of β0 gives ζ̂.

ln(
∑
i:S=s

Di) = β0 + β1s+ β2s
2 (s = 1, . . . , 7) (10)

GK apply this method to DHS data and present model fits to sibship sizes by log pro-
portion of deaths that look startlingly good. An illustration of such fit is provided in Fig.7a,
based on the Ethiopian 2000 DHS. GK conclude that they found ”a persistent, stable pat-
tern that may be useful in extrapolating to deaths in families with zero survivors”(p.580).
A similar regression model is used by the Iraq Family Health Survey Study Group (2008).

Unfortunately, as noted by GK, nothing can guarantee that the extrapolation to the
point where s = 0 will be accurate. And it turns out the method performs poorly in the
binomial case, despite the fact that the regression adjusts the data very well. To keep
it simple, we retain our first example, where deaths risks were all drawn from the same
distribution (with parameter p = 0.25) and sibship sizes followed a Poisson distribution
(with parameter λ = 5). If we keep the distribution of sibship sizes presented in Table 1 (p.
6), we know that 121 deaths will occur, out of which 3 will remain unobserved. This can
be seen in the last column of Table 9, where the number of deaths is distributed according
to the number of survivors. Note that the unobserved deaths come predominantly from
small sibships (n ≤ 4), whereas the distribution of deaths in sibships with more than one
survivor is to a large extent determined by sibships whose original size exceeds 4.

The log numbers of deaths of this example are plotted in Figure 7.b. The curve resembles
the one observed in Ethiopia, and here too, the quadratic model fits the data very well

12They suggest to compute exp(β0 + 0.5× σ2), where σ is the standard error of the regression.
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Figure 7 – Quadratic fits to number of survivors, by log number of deaths (a & b) and density
function of the ratio of predicted values over real numbers of unobserved deaths (c).

for sibships with 1 to 7 survivors (R2 = 0.98). And yet, reliance on goodness of fit is
insufficient. This model cannot predict the number of deaths in zero-survivors families. In
this case, the predicted number of unobserved deaths would be a substantial overestimate
(7), more than twice the real value (3).

To assess the sensitivity of this finding to variations in levels of mortality or sibship
sizes, this binomial example is replicated 2500 times, with probabilities of death ranging
from 0.2 to 0.7 and mean sibship sizes ranging from 3 to 10, allowing the deaths risks to
differ between sibship sizes. The extent of the overestimation does not appear to vary with
either mortality levels or sibship sizes. Fig.7c presents the density of the ratio of predicted
values to the actual numbers of unobserved deaths. The median of these ratios is 1.92, and
90% of them lie between 1.3 and 2.6.

Instead of using a regression-based extrapolation, it seems more appropriate to use
distributional assumptions. Obermeyer et al. (2010) suggest a clever way to do so. They
draw on the fact that for a given sibship size (n), the observed probability of death (pobs)
can be expressed as a function of the true probability of death (p) if both come from a
binomial distribution. Their demonstration can be summarized as follows :

pobs =

∑n−1
x=0 x f(x)

n− n f(n)
=
np− npn

n− npn
=
p− pn

1− pn
(11)
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n=1 2 3 4 5 6 7 8 9 10 Pop. Deaths

Si=0 0.25 0.12 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 2.98 2.98

1 0.75 0.75 0.42 0.19 0.07 0.03 0.01 0.00 0.00 0.00 21.11 12.17

2 0.00 1.12 1.27 0.84 0.44 0.20 0.08 0.03 0.01 0.00 59.76 23.26

3 0.00 0.00 1.27 1.69 1.32 0.79 0.40 0.18 0.08 0.03 95.77 25.99

4 0.00 0.00 0.00 1.27 1.98 1.78 1.21 0.69 0.35 0.16 99.33 21.34

5 0.00 0.00 0.00 0.00 1.19 2.14 2.18 1.66 1.05 0.58 80.90 16.87

6 0.00 0.00 0.00 0.00 0.00 1.07 2.18 2.49 2.10 1.46 60.70 10.08

7 0.00 0.00 0.00 0.00 0.00 0.00 0.93 2.14 2.70 2.50 35.37 5.12

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 2.03 2.82 17.73 2.37

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 1.88 7.66 0.56

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 1.69 0.00

g(n) 3.00 8.00 16.00 25.00 13.00 13.00 12.00 4.00 3.00 3.00

Table 9 – Distribution of sibships according to the number of survivors, number of siblings and
number of deaths

The value of p can be algebraically13 computed from pobs when the size of sibships equals
2 or 3. In larger sibships, the observed probability is virtually the same as the true value,
because the chance that no one survived is close to zero. The logic is thus to correct the
deaths rates observed in the sibships of size 2 and 3, and then to regress the corrected
probabilities on the sibship sizes at the start of the observation period. This procedure
makes it possible to compute the total number of deaths and to derive a correction factor.

But this procedure too has its drawbacks, of which the major one is the uncertainty
around the correction factors. Once again, Obermeyer et al. (2010) apparently use correc-
tion factors that are sex-specific but not age-specific, and are based on all sibling deaths,
even those occurring out of the observation period and in childhood. If the computation
was made only from adult deaths observed in the last 10 years, the number of deaths would
be much smaller and hence the uncertainty around the estimates would be much higher.

Fortunately, the standard calculation allows us to sidestep this difficult estimation,
because the three structural biases cancel each other.

13Obermeyer et al. (2010) show that :

n = 2⇒p = pobs/(1− pobs)

n = 3⇒p =
(1− pobs)−

√
−3p2obs + 2pobs + 1

2pobs − 2
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8 Conclusion

In their pioneering work making extensive use of empirical estimates of adult survival,
Rajaratnam et al. (2010) show that recent trends of adult mortality have been substan-
tially more diverse than what could be expected from child mortality. This stresses the
importance of a direct estimation of adult deaths risks, instead of inferring them from
child survival. In Sub-Saharan Africa, where demographic data remain scant and defec-
tive, sibling histories have emerged as a major source of estimates. They circumvent several
limitations of orphanhood techniques, such as the issues revolving around the time-location
of estimates when mortality has not evolved linearly, or the correlation of deaths risks be-
tween parents and young children. Compared to deaths distribution methods, they are
less demanding in terms of data collection and they allow to reconstruct past trends of
mortality from a single inquiry. Siblings estimates have thus found increased acceptance
in the literature, even tough considerable uncertainties remain about their strengths and
weaknesses.

In this paper, we showed that selection biases are not the predominant problem plaguing
sibling histories. This is because the presumption that mortality is associated with sibship
size is contradicted by survey data. Under most circumstances, the standard calculation
should therefore be preferred. Of course, there are ways to improve correction procedures
suggested by Gakidou and King (2006) and Obermeyer et al. (2010), especially as regards
the zero-survivor bias when applied to adult siblings. Eventually, one might wish to carry
out the calculation in several ways and compare the estimates. But at this stage, potential
users should be aware that corrections for selection biases can artificially inflate mortality
rates when they fail to take into account the age and sex of respondents and siblings. Such
corrections will also distort the mortality sex ratios, and exaggerate the rates of mortality
increases when combined with other types of estimates for the more distant past.

In sum, we call for a more cautious approach when dealing with sibling estimates. For
instance, there is a need to conduct a thorough examination of the quality of the data. A
number of unanswered questions also remain as regards the duplication of some sibships in
the data files. Duplicated sibships are likely to be younger on average, since the probability
that a sibship is observed multiple times diminishes with the age of the respondents (un-
married women aged 15-24 are more likely to be clustered in the same sampled households
than women aged 40-49). Since the age at first marriage is higher in Eastern and Southern
Africa, sibships are also more likely to be duplicated in these regions. This could affect
some of the estimators routinely used by demographers, such as the proportion of deaths
due to maternal causes. Besides, when regression models are used, the repetition of sibships
in the files introduces some unobserved heterogeneity that will biases the standard errors
downward. More attention should be paid to these issues.
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1990 1995 2000 2005

Benin 0.208 0.213 0.222 0.237
Burkina Faso 0.283 0.281
Cameroon 0.222 0.275 0.321
CAR 0.364
Chad 0.248 0.253 0.258
Congo 0.404 0.249
Congo DRC 0.29 0.274
Cote d’ Ivoire 0.278
Ethiopia 0.391 0.322 0.221
Gabon 0.279 0.293
Guinea 0.249 0.295
Kenya 0.192 0.279 0.326 0.311
Lesotho 0.454
Madagascar 0.294 0.269 0.24 0.211
Malawi 0.28 0.468 0.545
Mali 0.24 0.25 0.26 0.272
Mozambique 0.173 0.21 0.254
Namibia 0.16 0.244 0.368
Niger 0.25 0.238 0.227 0.217
Nigeria 0.303 0.272
Rwanda 0.537 0.39
Senegal 0.198 0.199 0.2
Sierra Leone 0.234 0.267
South Africa 0.102 0.171
Swaziland 0.505 0.625
Tanzania 0.223 0.278 0.328
Togo 0.203 0.246
Uganda 0.374 0.418 0.421 0.382
Zambia 0.315 0.537 0.609 0.495
Zimbabwe 0.206 0.374 0.523 0.596

Table 10 – Estimates of female 45q15 obtained from sibling data with the Poisson regression model
of Timaeus and Jasseh (2004) (adjusted values for under-reporting of deaths in the more distant
past)
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1990 1995 2000 2005

Benin 0.302 0.3 0.304 0.314
Burkina Faso 0.348 0.335
Cameroon 0.3 0.364 0.419
CAR 0.464
Chad 0.274 0.286 0.299
Congo 0.558 0.308
Congo DRC 0.362 0.336
Cote d’ Ivoire 0.371
Ethiopia 0.477 0.376 0.248
Gabon 0.401 0.418
Guinea 0.273 0.328
Kenya 0.212 0.321 0.391 0.392
Lesotho 0.606
Madagascar 0.361 0.327 0.296 0.27
Malawi 0.308 0.51 0.596
Mali 0.247 0.275 0.308 0.344
Mozambique 0.254 0.282 0.315
Namibia 0.278 0.382 0.518
Niger 0.256 0.238 0.222 0.208
Nigeria 0.34 0.296
Rwanda 0.768 0.517
Senegal 0.242 0.239 0.237
Sierra Leone 0.256 0.309
South Africa 0.285 0.367
Swaziland 0.625 0.684
Tanzania 0.317 0.373 0.418
Togo 0.259 0.303
Uganda 0.479 0.534 0.544 0.505
Zambia 0.359 0.593 0.666 0.549
Zimbabwe 0.291 0.488 0.639 0.7

Table 11 – Estimates of male 45q15 obtained from sibling data with the Poisson regression model
of Timaeus and Jasseh (2004) (adjusted values for under-reporting of deaths in the more distant
past)
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