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Abstract

To test hypotheses of the seasonality of influenza, we analyze the pairwise comove-
ments of the incidence of influenza and malaria, and of influenza and chickenpox, in
the tropical country of Burundi. We use the Goodman-Grunfeld nonparametric test
for comovement between two time series, correcting for serial correlation. We find a
significant comovement between influenza and malaria, suggesting that humidity, an
important factor in the transmission of malaria, also plays a role in influenza transmis-
sion, at least in the tropics. No comovement was found between influenza and chick-
enpox, implying that crowding effects are not a significant factor in the seasonality of
influenza in the tropics. We show that an indirect method may provide information
that would otherwise elude direct analysis. Our data suggest that either the driving
factors of cyclicality, or modes of influenza transmission, or both, may work differently
in the tropics than in temperate regions.
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1 Introduction

Influenza A virus causes worldwide epidemics annually, resulting in considerable morbidity

and mortality. For example, in the United States in a typical influenza (flu) season, more

than 200,000 people are hospitalized from flu complications, and approximately 36,000

people die from flu-related causes [1, 2]. The elderly, young children and those with certain

health conditions are at a high risk for serious flu complications. Influenza is seasonal:

in temperate climates, the disease exhibits a marked increase during the winter, typically

between December and April in the northern hemisphere, and between June and September

in the southern hemisphere [3]. The reasons for the seasonality of the flu are not well

understood. Some researchers suggest that climate plays a major role, by affecting viral

survival or transmission efficiency [4].

Seasons may also affect host susceptibility to infection in temperate regions, be-

cause winter reduction in sunlight exposure lowers production of vitamin D, weakening the

immune system [5]. Climate may also cause indirect effects such as behavioral changes in

human crowding, where, for example, people remain in closed and confined quarters during

the winter [6]. Tropical and sub-tropical regions also display seasonal effects, although less

pronounced [7]. This suggests a complex mechanism underlying seasonal effects, and sea-

sonal consistency is still poorly understood. For simplicity, we refer hereinafter to cyclical

incidence as seasonality, even in the equatorial context where the temperate seasonality of

winter, spring, summer, and fall, does not apply.

Understanding influenza patterns is crucial for vaccination timing and correct vac-

cine strain identification. Ideally, control strategies will be adjusted according to individual

regions using their own seasonal characteristics. Currently, only two vaccine compositions,

corresponding to the northern and southern hemispheres, are recommended annually by

the World Health Organization [8]. The influenza A viral genome drifts gradually over time
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and new strains spread globally [9]. More dramatic strain changes are known as antigenic

shifts, and precipitate pandemics [10]. Understanding the patterns of influenza in equato-

rial regions can aid in optimizing strain collection and vaccination timing in the tropical

regions, and help to shed light on the basic biology of influenza virus transmission.

A variety of social, demographic and environmental factors have been linked to

influenza transmission. Children are thought to play a major role in the dissemination

of influenza in households and schools [11]. Cold temperatures and low relative humidity

are thought to be favorable for the spread of the virus [4]. Confinement to closed spaces

especially favors viral transmission [6]. The substantial overlap between these factors and

the seasons per se complicates causal assignment. The tropics, which have influenza, but

different seasonal patterns, provide a useful natural experiment in influenza cyclicality.

In tropical regions, however, there has been less influenza research [12]. Heat and high

humidity have been suggested to enhance virus survival and, therefore, to activate seasonal

patterns [13]. Temporal patterns in tropical and sub-tropical regions have been linked with

both environmental and population determinants to explain the wave of influenza in Brazil

[14].

We investigate flu seasonality by comparison to the seasonal patterns of two other

diseases, chickenpox and malaria. Chickenpox is a highly contagious disease caused by

primary infection of varicella zoster virus. It is estimated that, in the absence of vaccine,

the lifetime risk for varicella infection is over 95%, with most cases occurring during the

first 15 years of life [15]. Contact rates are the driving factor in chickenpox epidemics

[16, 17]. There is, therefore, a strong linkage to the school calendar. A pre-vaccination

study in Canada and the United Kingdom demonstrated case increases during the school

year (September to June) and a sharp decline during the summer (June to September)

[18]. The disease spreads primarily by direct contact and airborne transmission; important
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exposure hubs are classmates and siblings [19].

Chickenpox in the tropics is less well-studied than in temperate regions. The classic

view is one of lower transmission rates, and therefore higher median of age infection [20, 21].

More recent data from urban India suggest a pattern that resembles industrialized coun-

tries, viz., high seroprevalence of varicella antibodies by adulthood, while rural areas have

lower rates of chickenpox transmission, evidenced by lower sera antibody prevalences [22].

Likewise, differences were found in transmission patterns between the tropical and temper-

ate zones of Australia [23]. On the other hand, in a sample of refugees from several tropical

countries, reasonably high serum antibody prevalence was found [24]. Similarly, steep in-

creases by age in seroprevalence of varicella zoster antibodies were found in rural Bolivia,

suggesting high transmission among children and teenagers [25]. The last half-century

has witnessed urbanization and increases in population density in tropical countries. This

suggests that the more recent findings, of convergence in the epidemiology of chickenpox

between temperate and tropical settings, are more an updating than an invalidation of the

classical view of low transmission in the tropics.

Malaria is one of the most severe public health problems in sub-Saharan Africa,

and its seasonality has been studied extensively to say the least. Humidity — specifically,

rainfall — is well-known to be associated with malaria infection rates [26]. Rainfall and, to

some extent, temperature, are important determinants of the intensity of the entomologic

inoculation rate during the peak of the transmission season [27]. The causal mechanism is

the development of mosquito larvae in water [28]. Peak malaria transmission thus lags peak

rainfall by at least mosquito larval and pupal development times, and parasite development

times within the vector. The variability (as opposed to amount) of rainfall is also important

to malaria transmission in Burundi [29].

We use an indirect approach to examine the cyclical behavior of influenza in Burundi,
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by comparing influenza incidence patterns to those of malaria and chickenpox. Extrapo-

lating from the cyclicality of the comparison diseases, we test hypotheses about whether

humidity or crowding are better predictors of influenza incidence. Considering our data

as a time series, we use a nonparametric test of influenza incidence co-movement with

chickenpox and malaria. Since malaria is so well established as a humidity-related disease,

comovement between malaria and influenza would be an indication by proxy that humidity

(or dryness) plays a role in influenza transmission. On the other hand, if there is also strong

comovement between influenza and chickenpox, we can point to increased person-to-person

contact (e.g., from the start of the school year) as playing a role in influenza. Thus we

exploit two dyadic disease relationships (influenza-malaria and influenza-chickenpox) at

the population level to test hypotheses about shared epidemiologic mechanisms among the

three diseases.

2 Materials and Methods

2.1 Data

Burundi is a small (27,834 km2), densely populated country in East Africa with an es-

timated population of 8.7 million (as of 2008) and an estimated infant mortality rate of

60 per 1,000 live births. During the time period of our data (1981–1987), the national

population grew from 4.17 to 5.07 million, a growth rate of almost 3% per year [30]. This

is a large growth rate, implying a population doubling time of about 23 years. Relevant

for the present study, the high growth rate also makes for a young-skewed population age

structure, and thus a steady stream of chickenpox-susceptible children.

Burundi has an equatorial climate with the average annual temperature between

17° to 23°C, depending on province, which is somewhat lower than other tropical countries
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since the average altitude is about 1,700m. At the provincial level, annual low temperatures

range from 5–12°C, and annual high temperatures range from 26–35°C. The average annual

rainfall is approximately 150 cm with two wet seasons (February to May and September to

November), and two dry seasons (June to August and December to January). The June–

August period is the driest, with many weather stations typically reporting no measured

precipitation during one or all of these months [31].

Monthly incidence data for 28 diseases, including influenza, malaria, and chickenpox,

were available from reports submitted to the Ministry of Health by health centers. Cases

were coded as malaria (ICD9 084) or as chickenpox (ICD9 052) or as influenza (ICD9

487). Our data are on case counts, not individual cases, and therefore detail on laboratory

confirmation, etc., is not available. This surveillance data set was provided to the authors

by Robert Chen of the CDC, Atlanta, and is further described in the literature [32]. At

the time of the data collection, no vaccination programs against any of the three diseases

were being administered. We use data spanning 81 months between 1981 and 1987. We

are unaware of any available directly-measured humidity data during this time period, and

thus we employ the malaria incidence data as an effective proxy.

2.2 Data analysis

We use the Goodman-Grunfeld nonparametric test of comovement between two time series

[33]. This test is based on a chi-squared analysis of signs of differences of each time series,

cross-classified in a 2 × 2 table. Thus, we analyze if cases of malaria and influenza (for

example) both increase, or both decrease, or move in either permutation of opposite direc-

tions, on a month-to-month basis. Under the null hypothesis of no comovement between

the two data series, the expected frequencies of the four cells of the table would be equal.

Moreover, the Goodman-Grunfeld test corrects for serial correlation.
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A sketch of the test follows; the particulars are given in the cited works [33, 34].

Take two time series X = {X0,X1, . . . ,Xn} and Y = {Y0, Y1, . . . , Yn}, with subscripts

for time periods. Create dummy (indicator) variables, U = {U0, U1, . . . , Un−1} and V =

{V0, V1, . . . , Vn−1} respectively, coded {0, 1}, to indicate period-to-period increase. That

is, Ui = 1 if Xi+1 − Xi > 0, and similarly for Vi and the Y series. Then cross-classify U

and V in a 2 × 2 table, the cell counts of which are labeled (left to right) a, b across the

top row and c, d across the bottom row; the counts of comovements are a and d and the

countermovements are b and c (confer table 2 for the layout). The Goodman-Grunfeld test

statistic is:

a − A
√

n[(a + b)(a + c)(b + d)(c + d)/n4 + 2ef ]
∼ N(0, 1),where:

e =

n
′
−1

∑

i=0

UiUi+1/n
′ − [(a + b)/n]2, and f =

n
′
−1

∑

i=0

ViVi+1/n
′ − [(a + c)/n]2,

and where n = a + b + c + d, A = (a + b)(a + c)/n, and n′ = n − 1 is the number of

sequential pairwise comparisons of U and V . The term in ef is the correction for serial

correlation. The test statistic is normally distributed because of the equivalence between

a normal and a χ2 distribution with one degree of freedom. Although not shown in the

above formula, we use the ‘continuity correction’ [35], as Goodman and Grunfeld advise.

The Goodman-Grunfeld test is more conservative (i.e., harder to reject the null hypothesis

of no comovement) than a näıve χ2 analysis of the comovements. We use two-sided tests

throughout.

To supplement the comovement analysis, we present elasticity plots: monthly cases

of one disease against another, on log-log scale. The slope of this graph gives the elasticity,

i.e., the percent change in the number of cases of one disease as a factor of the percent

change in number of cases of the other disease [36, p. 227]. A measure of goodness of
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Table 1: Summary of average and total cases of influenza, chickenpox and malaria in
Burundi, in the study period, beginning January 1981

Influenza Chickenpox Malaria

mean SD mean SD mean SD

January 7924.2 1779.0 1404.0 205.9 14527.3 3626.5
February 8363.0 1486.9 1226.0 403.1 16042.3 2165.7

March 7966.7 1525.5 1257.0 409.6 14743.3 3545.0
April 8463.3 2480.9 1059.3 409.5 16021.9 4890.8
May 10383.9 2313.9 857.3 397.9 18921.7 3580.8
June 11936.6 4469.7 895.6 252.3 23278.6 7319.9
July 8944.6 1809.1 1083.9 323.7 20269.9 4714.1

August 6927.1 1133.5 1264.0 387.5 16852.1 3757.7
September 5897.7 1153.6 1177.7 331.2 15721.6 4245.2

October 6371.5 929.6 1323.9 368.0 15883.7 3937.9
November 9898.5 4387.5 1507.3 401.2 16294.9 5795.4
December 11158.3 6826.1 1750.8 296.9 17149.8 5034.4

Total cases 694,295 100,492 1,408,272

fit of the elasticity plot provides an alternate way to measure the co-variation of the two

data series; we use the R2 of the regression line. A significant Goodman-Grunfeld p-value

indicates comovement or antimovement, because we use two-sided tests. The elasticity

plot allows visualization of whether high numbers of cases of one disease are associated

with high or low numbers of cases of the other disease.

Both of these approaches (the Goodman-Grunfeld test and the fit of the log-log

plot) are scale-invariant (being based on signs of differences and on percentage changes,

respectively). The scale-invariance of the log-log plot has been exploited in epidemiology

before [37, 38]. These methods are ideally suited to data sets, such as ours from Burundi,

where there may be reporting anomalies. In other words, these methods are robust to both

month-to-month and intra-disease differences in reporting rates. With regard to reporting

biases, only if under-reporting of chickenpox depended systematically on malaria rates, or

vice versa, would these methods be inappropriate. However, there is no evidence in our
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data of any such systematic error structure; the data come from routine surveillance. For

example, chickenpox, having subclinical cases, may well be under-reported, but there is no

reason to expect its month-to-month under-reporting rate to vary according to the other

diseases.

3 Results

Table 1 shows that the total number of cases during the seven-year period is largest

for malaria followed by influenza and chickenpox, and that the rank order is maintained

throughout the year. Synchronously with the rainy seasons, malaria has two marked peaks,

the first one in June, and a second, smaller, one in December. Influenza follows a similar

pattern. Chickenpox incidence peaks in December, which is the middle of the school year,

with a sharp decrease beginning in April. Figure 1 is a time series plot of the cases of all

three diseases, on a logarithmic scale, and shows that influenza and malaria share a similar

pattern.

Figure 2 (left panel) is the scatterplot of influenza cases vs. malaria cases, on log-log

scale, with the OLS regression line (R2 = 46%). Clearly, the tendency is for months with

more malaria cases to have more influenza cases, and vice versa. The right panel (influenza

and chickenpox) has a slope that is shallower, and opposite in sign, and the scatter is greater

(R2 = 10%). The scatterplots illustrate well that the simple correlation between cases of

influenza and chickenpox is weaker than that between influenza and malaria.

Table 2 presents the Goodman-Grunfeld nonparametric analysis of disease comove-

ment for influenza and chickenpox, and for influenza and malaria. The p-value for comove-

ment between influenza and malaria is 0.000105. This is more conservative than the value

obtained with a Pearson χ2 test; interestingly, the p-value assuming a hypergeometric dis-

tribution (Fisher’s ‘exact’ test) is about halfway between the two. We easily reject the null
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Figure 1: Time series plot of influenza, chickenpox and malaria cases, Burundi, 1981–87.
Gray shading indicates twice-annual rainy seasons.
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Figure 2: Influenza versus malaria (log-log), R2=46% (left), and influenza versus chicken-
pox (log-log), R2=10% (right). Burundi, 1981–87.
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Table 2: Goodman-Grunfeld analysis of influenza, chickenpox, malaria: Burundi, 1981–87
chickenpox malaria

influenza Increases Decreases Increases Decreases

Increases 19 20 30 9

Decreases 22 18 12 27

p-values:

Pearson χ2 0.58 0.000043
Fisher’s Exact Test 0.66 0.000087
Goodman-Grunfeld 0.74 0.000105

hypothesis of no comovement, and as is evident from figures 1 and 2, as well as from table 2,

this is comovement not antimovement (the point being that the two-sided hypothesis test

does not distinguish between the two, but that the graphs do). On the other hand, for

influenza and chickenpox, we fail to reject the null hypothesis of no comovement (p=0.74),

and in any case, even visual inspection of the 2 × 2 table leaves no doubt that these two

times series do not co-move.

Although Burundi is geographically compact, it is ecologically heterogeneous, and

one explanation worth ruling-out is that the three diseases are not geographically co-

incident. Hypothetically, if malaria is exclusively a rural disease and chickenpox predomi-

nantly an urban one, then there is not much logic to a country-wide comparison. Table 3

summarizes the Goodman-Grunfeld analysis, disaggregated by province. It gives the G-G

p-value as well as the R2 of the log-log case plot. In every province except one (Bururi),

the G-G test favors the comovement of malaria and influenza (and in this province the test

is not significant for either comparison), and the R2 always favors malaria. Thus, we find

no evidence that geographic aggregation effects are responsible for the overall finding.

Our case data are not laboratory-confirmed. Although respiratory symptoms would

easily differentiate influenza from malaria (with fever being a commonality), and the rash

would differentiate chickenpox, lab-confirmed results would clearly be more accurate. How-
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Table 3: Goodman-Grunfeld analysis by province
Test for comovement of influenza and:

chickenpox malaria

Province G-G p-value R2 G-G p-value R2

Bubanza 0.406 .0041 0.004 .43
Bujumbura 0.644 .027 0.272 .15

Bururi 0.223 .15 0.565 .2
Cankuzo 0.431 .01 0.001 .41
Cibitoke 0.789 .0048 0.390 .1

Gitega 0.089 .00012 0.001 .28
Karuzi 1.000 .0086 0.000 .016

Kayanza 0.934 .0069 0.076 .29
Kirundo 0.995 .0077 0.006 .29

Makamba 0.590 .2 0.576 .27
Muramvya 0.908 .0052 0.006 .15

Muyinga 0.217 .24 0.159 .44
Ngozi 0.571 .002 0.000 .28

Rutana 0.906 .012 0.003 .077
Ruyigi 0.940 .0049 0.024 .22

Whole Country 0.739 .1 0.000 .46
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ever, in Africa, the representativeness of lab data would have to be scrutinized carefully.

With high fever as a commonality of both syndromes, one possibility is that some malaria

misdiagnosed as influenza drives the results. The lopsided numbers of the two diseases (cf.

table 1) removes concern about the vice-versa bias. We do not believe that misdiagnosis

drives our results, for two reasons. First, while fever is present in both cases, the clinical

manifestations are saliently different. Major upper respiratory tract signs and symptoms

are present in clinical influenza. Second, especially in Africa, malaria is often a default

diagnosis for any febrile syndrome. Thus, the potential for error is that influenza cases

are classified as malaria. The hypothetical concern is that spill-out from malaria could

drive the result, but the realistic classification error would lead to spill-in to the malaria

numbers.

4 Discussion

In the temperate regions, humidity patterns are broadly inversely related to the school

calendar, though of course this is correlation not causation. Disentangling the effects

of seasonal factors with school-year effects per se, is a challenge. The tropics present a

unique laboratory in which to test theories of the effects of humidity on influenza virus

transmission. Our data show that in Burundi, influenza incidence co-moves with malaria

incidence, but not with chickenpox. Interpreting malaria as an indirect, but tightly-linked,

measure of humidity, and chickenpox as a control for cyclical crowding factors, we infer

influenza incidence to be more related to humidity.

This finding is in agreement with other work, which finds sporadic cases of influenza

in Dakar during the first 6 and the last 3 months of the year, with an epidemic period during

the hot, rainy season characterized by high relative humidity [13]. Accordingly, in Brazil,

high levels of humidity coincide with influenza activity near equatorial regions [14]. This
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is in contrast, however, with temperate regions, where influenza peaks during the winter,

characterized by both lower temperatures and humidity levels [39]. Household contacts

have been shown to be an important correlate of influenza transmission in temperate re-

gions [11], but whether contact rates trigger influenza epidemics, as is thought to occur

with chickenpox, is unclear. It cannot be ruled out that different factors govern influenza

transmission in different contexts (i.e. the tropics versus temperate regions). Moreover,

the superposition of many seasonal diseases in temperate winters make interpretation of

single-disease seasonal patterns difficult; for example, chickenpox and influenza both peak

in the winter. Fomite transmission may play a relatively larger role in influenza virus trans-

mission in the tropics than in temperate regions. The explanation for this would be that

humidity may enhance viral survival on surfaces even if it hampers airborne transmission

(which is one explanation of experimental findings [4], though the animal model may also

be sensitive to humidity).

Further work, including laboratory experiments with animal models, and epidemio-

logical studies, is warranted to understand better the seasonal triggers of influenza globally.

By linking diseases with known transmission factors (malaria and chickenpox) to the less-

studied problem of influenza in the tropics, this study has demonstrated that an indirect

method may provide information that would otherwise elude direct analysis. The present

study lacks information on the age of the cases, and this would be potentially-useful data.

Although we are highly confident in the robustness of malaria incidence data as an indi-

rect measure of ambient humidity, meteorological measurement would also be a welcome

addition.

In summary, our analysis suggests strongly that influenza incidence in Burundi

is procyclical with humidity. All cyclical diseases in our dataset are not in-phase with

one another, since chickenpox exhibits no co-movement with influenza, whereas malaria
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and influenza exhibit strong comovements. This is in contrast to temperate regions where

chickenpox and influenza both follow winter patterns. More investigation is warranted, but

these results show that, at least with respect to humidity, the topics and temperate regions

show diverging patterns. Regardless of the interpretations for the underlying mechanisms,

the strength of our statistical findings suggest that, simply as an empirical matter, the

comovement of incidence of influenza and malaria in Burundi is beyond doubt.
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