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Abstract

The paper introduces a new modified Lee-Carter model for analyzing short

base period mortality data, for which the original Lee-Carter model produces

severely fluctuating predicted age-specific mortality. Approximating the un-

known parameters in the modified model by linearized cubic splines and other

additive functions, the model can be simplified into a logistic regression when

fitted to binomial data. The expected death rate estimated from the modified

model is smooth not only over ages but also over years. An application in an-

alyzing mortality data in China (2000-2008) shows the advantages of the new

model over the existing models.
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1. Introduction

Modeling and forecasting mortality are of great importance in insurance and popula-

tion studies. Lee and Carter (1992) proposed a model that has been widely adopted

in academic research and practical applications such as population forecasts by coun-

tries and organizations. Hollmann et al. (2000) illustrated how the Lee-Carter model

was used in the population projections of the United States by the U.S. Bureau of

Census. Kaneko et al. (2008) documented the use of the model in population projec-

tions for Japan by the National Institute of Population and Social Security Research

in Japan. Wang and Liu (2005) used the model in modeling and forecasting mortality

distributions in England and Wales.

In the Lee-Carter model, the observed logarithm of the central death rate for age

x in year t, ln[m(x, t)], is expressed as

ln[m(x, t)] = a(x) + b(x)k(t) + ϵx,t

where a(x) and b(x) are unknown functions of age x, k(t) is an unknown function

of year t, and ϵx,t is the error term. Lee and Carter (1992) suggested to estimate

a(x) by the average of ln[m(x, t)] over time, and to estimate b(x) and k(t) using a

two-stage method with restrictions b(x) sum to 1 and k(t) sum to 0 to the model.

In the first stage, singular value decomposition (SVD) is applied to the matrix of

ln[m(x, t)]− a(x). The first right and left vectors and leading value of the SVD, after

the normalization for satisfying the restrictions on b(x) and k(t), provide a unique

solution for b(x) and k(t). In the second stage, the time series of k(t) is re-estimated

by solving for k(t) such that

Dt =
∑

[N(x, t)ea(x)+k(t)b(x)]
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where Dt is the total number of deaths in time t, and N(x, t) is the exposure to risk

of age x in time t. This is to counterbalance the effect of using logarithm of the rates,

and to give larger weight to ages at which death rates are high. The adjusted k(t)

is extrapolated using a random walk with drift model, i.e., k(t) = k(t − 1) + d + et.

Forecasts of age-specific death rates are obtained using extrapolated k(t) and fixed

a(x) and b(x).

R users can use an R package, “demography”, developed by Hyndman (2006) to

perform the analysis. In fact, the package contains the original Lee-Carter model

and some modifications and extensions of the model that had been published in the

literature. Using the R package and the mortality data of ten developed countries

taken from the Human Mortality Database (2006), Booth et al. (2006) compared four

of the variants suggested in Lee and Miller (2001), Booth et al. (2002), Hyndman and

Ullah (2007) and De Jong and Tickle (2006) and concluded that all these variants

are more accurate than the original Lee-Carter method in forecasting the death rates

in log scale, by as much as 61%. However, there are no significant differences among

the five methods in forecasting life expectancy, due to the fact that accuracy of death

rate in log scale does not necessarily translate into the accuracy in the original scale.

Using the “demography” package, we fit the Lee-Carter model to the sex-specific

and age-specific mortality data in China (2000-2008), which are obtained from the

China Population Statistics Yearbook (2001-2009). The data for 2000 are from census,

and that for other years are from surveys of about 0.1% of the entire population,

except for year 2005, which are from a survey of about 1% of the entire population.

For the major years, 2000 and 2005, the data are for people age 0 through 100+, but

in the remaining years, the data are for people age 0 through 90+. The data can

be written in the format (n(x, t), d(x, t), x, t), where n(x, t) is the average number of

people of age x during the period of Nov. 1, year t−1 and Oct. 31, year t, and d(x, t)
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is the number of people who died during the period. In census year 2000, the value

of percentage d(x, t)/n(x, t) is a good approximation of the central death rate at age

x. However, in other years with small sample sizes, d(x, t) can be very small for some

ages, even with values 1 or 0, and in these cases, the value of the percentage may not

be a good approximation of the central death rate.

To apply the Lee-Carter model, for 2000 and 2005, people over 90 must be re-

counted as in one group, age 90+, to form a matrix of ln[m(x, t)] − a(x), which is

91×9. Using the functions “forecast” and “lca” in the “demography” package, we have

the predicted central death rates for 2009 and 2010 for males, as shown in Figure 1.

Obviously, the predicted mortality curves are not smooth and fluctuate severely over

ages. Adding option adjust =�dt�or adjust=�dxt� in “lca”, i.e., using adjustment for

coefficient k(t) proposed by Lee and Carter (1992) or Booth et al. (2002), Figure 1

does not change much. The phenomenon of fluctuation over ages is not unique for

the China data. While analyzing the U.S. death rate data from 1933 to 1987, Lee and

Carter (1992) noted that the forecasts are unstable when the base period is short,

such as 10 or 20 years. In the China data, the base period is only nine years, and the

small sample sizes in most of the years magnify the instability.

This paper introduces a new modified Lee-Carter model for analyzing short base

period age-specific data. In the new model, linearized cubic spline and other additive

functions are used to approximate the unknown functions of age a(x) and b(x), logit

scale of the UNKNOWN expected death rate is modeled. That is, the model is a

logistic regression when fitted to binomial data. To better approximate a(x) and

b(x) with cubic splines, in section 2, linearized expressions of cubic splines under

quadratic or linear restrictions in the tails are presented. The detailed techniques on

choosing a final model that best describes the death rate and its changes over ages and

years are illustrated in Section 3 and Section 4 as well, in an example of analyzing
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the sex-specific and age-specific short base period mortality in China (2000-2008).

Conclusions and discussions are presented in Section 5.

2. Linearized Expression of Cubic Splines

A piecewise cubic spline function with knots, Ωm = {x1, ..., xm}, can be expressed as

fΩm(x) = f0(x)I(x0≤x≤x1) + ...+ fm(x)I(xm≤x≤xm+1), x0 ≤ x ≤ xm+1 (1)

where fi(x) = ai(x−xi)
3+ bi(x−xi)

2+ ci(x−xi)+di, i = 0, 1, ...m, and I(xm≤x≤xm+1)

is an indicator function with value 1 for xm ≤ x ≤ xm+1. Under the assumptions of

continuous first and second derivatives at each of the knots, the piecewise cubic spline

function can be written as

fΩm(x) = f0(x)I(x0≤x≤x1) + ...+ fm(x)I(xm≤x≤xm+1)

= β∗
00 + β∗

01Z01(x) + β∗
02Z02(x) + β∗

0Z0(x) +
m∑
i=1

{β∗
i Zi(x)} (2)

where

Z0i(x) = (x− x0)
i
+, i = 1, 2; Zi(x) = (x− xi)

3
+, i = 0, 1, ...,m. (3)

In other words, cubic spline function (1) can be expressed as a linear combination of

some nonlinear Z functions of x. Note that (2) has m + 4 parameters, and is cubic

below the first knot x1 and also cubic above the last knot xm.

Under the restriction of quadratic above the last knot, the corresponding Z func-
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tions in (2) become

Z0i(x) = (x− x0)
i
+, i = 1, 2;

Zi(x) = (x− xi)
3
+ − (x− xm)

3
+, i = 0, ...,m− 1; (4)

Zm(x) = 0.

Under the restrictions of linear above the last knot, the corresponding Z functions

in (2) become

Z01(x) = (x− x0)+;

Z02(x) = (x− x0)
2
+ − 1

3(xm − xm−1)
((x− xm−1)

3
+ − (x− xm)

3
+);

Zi(x) = (x− xi)
3
+ − (x− xm−1)

3
+

xm − xi

xm − xm−1

+ (x− xm)
3
+

xm−1 − xi

xm − xm−1

, (5)

i = 0, 1, 2, ...,m− 2;

Zm(x) = Zm−1(x) = 0.

In addition to the restriction above the last knot, below the first knot we can force

a quadratic form by setting Z0(x) = 0, or a linear form by setting Z02(x) = Z0(x) = 0.

If linear restrictions are forced in both tails, (2) becomes

fΩm(x) = β∗
00 + β∗

01Z01(x) +
m−2∑
i=1

β∗
i Zi(x), (6)

where the nonlinear functions Z01(x), Zi(x), i = 1, 2, ...,m − 2 are defined as in (5).

Actually, expression (6) is known as the Restricted Cubic Spline(RCS), proposed

by Devlin and Weeks (1986). The RCS has been applied in many studies such as

Durrleman and Simon (1989) and Herndon and Harrell (1995).

Harrell (2001) illustrated the use of RCS in regression models and suggested a

6



table of quantiles from which the locations of the knots for a given number of knots

can be chosen. In this paper, all possible restrictions in the tails, linear, quadratic

and cubic, totally nine scenarios are considered as candidate models to reflect the

true situation of a real data set. In addition to that, for a fixed scenario and a fixed

number of knots, among all possible sets of integer knots, we choose an optimal set

that makes the model best fit the data. A final model will be chosen among all the

candidate models.

Note that the Z functions under the quadratic restriction as in (4) and the deriva-

tion of (5) are hard to find, therefore the derivations of the Z functions are presented

in the Appendix. For more general introduction on spline, see McNeil et al. (1977)

and Smith (1979).

3. A Modified Lee-Carter Model

Assume d(x, t) is the number of deaths observed in n(x, t) subjects at age x and time

t, i,e., d(x, t) ∼ Bin(n(x, t), p(x, t)), where p(x, t) is the probability of death for a

subject at age x and time t. The proposed new model has the following form:

ln(
p(x, t)

1− p(x, t)
) = a(x) + b(x)k(t) (7)

where the expected central death rate p(x, t) and the functions of age x and t, a(x),

b(x) and k(t) are all unknown.

In application, each of the functions a(x), b(x) and k(t) can be approximated by

a linear combination of a cubic spline (possibly with restrictions at the tails) function

and other additive functions, such as 1/
√
x, 1/x and log x etc. For short base period

of data, modeling under assumption k(t) = t is usually adequate. For simplicity, for
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a fixed scenario of the restrictions in the tails and a fixed set of knots, Ωm, we write

a(x) = fΩm(x) and b(x) = gΩm(x), and the model can be written as:

ln(
p(x, t)

1− p(x, t)
) = fΩm(x) + gΩm(x)t (8)

which is a logistic regression when fitted to annually collected binomial data (d(x, t), n(x, t)).

For a fixed scenario and a fixed number of knots, an optimal set of knots that

produces the smallest residual deviance can be found among all possible integer knot-

s using an optimal search program. Whether the optimal knots are meaningfully

located provides further indications on the appropriateness of the restrictions on the

tails. For a fixed number of parameters, there are nine scenarios, and usually we pick

the one with the smallest residual deviance as a candidate for the final model. When

the number of parameters is too small, the change of the data cannot be adequately

presented; but when the number is too large, some of the parameters may not be

statistically significant. We need to find the proper number of parameters.

The commonly used statistical software such as R, SAS or Stata can be used to

obtain the residual deviance of a model, the estimates and p-values of the unknown

parameters, and the expected (i.e., fitted and predicted) age-specific death rates and

their 95% confidence intervals under the model. In this paper, all the codes are

written in R.

4. Example - Mortality Data in China

The new method is applied in analyzing the mortality data in China (2000-2008)

for males and females separately. In the analysis, we use the middle point of an

age period to represent the age of the group of people. For instance, 0.5 is used to
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represent the age of the group of people between ages 0 and 1.

4.1 Modeling of Age-specific Mortality

To give a detailed illustration on the process of finding the best models for males

and females, some candidate models that have been fitted are listed in Table 1. The

general form of an m knots model is

ln(
p(x, t)

1− p(x, t)
) = α00 + α01Z01(x) + α02Z02(x) + α0Z0(x) +

m∑
i=1

{αiZi(x)}+ γZ(x)

+β00t+ β01tZ01(x) + β02tZ02(x) + β0tZ0(x) +
m∑
i=1

{βitZi(x)}, (9)

where p(x, t), γ, α0j, β0j, (j = 0, 1, 2), αi, βi(i = 0, 1, ...,m) are all unknown; the func-

tions of age, Z01(x), Z02(x), Z0(x), Z1(x), ..., Zm(x) are defined as in (3) for models

M3, M4, M7, M10, M13-M16, F1, F4, F7, F10 and F13-F16, as in (4) for models M2,

M5, M8, M11, F2, F5, F8 and F11 and as in (5) for models M1, M6, M9, M12, F3, F6,

F9 and F12; Z(x) is defined as 1/x for M1-M12 and F1-F12, as 1/
√
x for M13-M14

and F13-14 and as log(x) for M15-M16 and F15-F16. Quadratic restriction in the left

tail is forced in models M7-M9, M14, M16, F7-F9, F14 and F16, i.e., Z0(x) = 0, and

linear restriction in the left tail is forced in models M1-M6, M13, M15, F1-F6, F13

and F15, i.e., Z02(x) = Z0(x) = 0. There are 15 parameters in models M1-M3 and

F1-F3, and 13 parameters in models M4-M16 and F4-F16.

For each of the models with a fixed number of knots, the optimal set of integer

knots that produces the smallest residual deviance among all possible integer knots is

listed in Table 1. Examining the optimal knots, we find that the last knot in models

M5-M6, M8-M9, M11-M12, F2-F3, F5-F6, F8-F9 and F11-F12 reaches the maximum

limit 100, which indicates that for the given number of knots the quadratic or linear
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restriction in the right tail is not suitable for the data. Take M5 as an example: when

linear in the left tail and quadratic in the right tail are forced, the smallest residual

deviance is reached at (6,15,18,29,100). Yet since the last knot reaches the maximum

limit 100, the assumed quadratic piece above the last knot does not exist. That is,

the five knots model degenerates into a four knots model with a cubic function above

the fourth knot 29, which actually becomes model M4.

Comparing the residual deviances among the 13-parameter models, we find that

models M4 and F4 have the smallest residual deviances, 10,006 and 5,932, for males

and females respectively. In logit scale, Figure 2 and Figure 3 show the observed and

fitted death rates for 2000, 2005 and 2008 using M4 and F4 for males and females

respectively. In the original scale, Figure 4 presents the corresponding death rates,

and the zoomed curves for ages 1.5-44.5. The curves show that the expected age-

specific mortality rates decrease over the years for females of all ages, and the same

is true for males under 13 and over 36; however there is no decreasing tendency for

males between 13 and 36. Figures 2-4 also show that the observed and the estimated

death rates fit each other well in both logit and the original scales.

Table 2 lists the estimate and significance of the unknown parameters for mod-

els M1, F1, M4 and F4, where M1 and F1 are the ones with the smallest residual

deviances among the 15-parameter models for males and females, respectively. After

checking the significance of the estimated parameters of the four models, we decide

to keep M4 and F4 as the final models to avoid over-fitting. Note another reason to

drop M1 and F1 is due to the unreal low mortality rate for people over 94 in 2000 as

shown in Figure 4, which may reflect the reality that the ages for some of the oldest

old in China are exaggerated (Wang et al. 1998).
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4.2 Probabilistic Prediction of the Expected Mortality

Based on the final models, M4 for males and F4 for females, which have the format

as in (9) and the estimated parameters as in Table 2, we obtain the expected age-

specific death rates in logit scales (ŷ) and in the original scale (p̂) for each gender,

where log[p̂/(1− p̂)] = ŷ, i.e., p̂ = exp(ŷ)/[1 + exp(ŷ)]. We have the lower and upper

bounds of the 95% confidence interval (CI) of p̂,

exp(ŷ − 1.96σ(ŷ))

1 + exp(ŷ − 1.96σ(ŷ))
and

exp(ŷ + 1.96σ(ŷ))

1 + exp(ŷ + 1.96σ(ŷ))
,

where σ(ŷ) is the standard error of ŷ. In this paper, we use “glm” with “logit” link

in R to fit the logistic regressions, and ŷ and σ(ŷ) are obtained using “predict.glm”

with“fit” and “fit.se” options.

For observed 2000 and predicted 2010, Figure 5 presents fitted and predicted age-

specific mortality rates and the 95%CIs for males and females of all ages, and the

zoomed curves for ages 1.5-50.5 are also exhibited. From the curves we can see that

for same ages, death rates for males are higher than that for females except for babies

under one year of age in year 2000, where the expected rates reflect the observed

death rates, 0.032 for females and 0.023 for males.

The confidence intervals may look narrow for some readers, and there are two

reasons. One is that the 95%CIs are for the expected values of death rate p̂, not for

the observed values of p, and the other is that the model is a logistic regression, which

produces small variances for the unknown parameters when the sample size is very

large. In the data, in the census year 2000, the sample size is 636,545,884 for males

and 599,169,477 for females.

To study the change of the standard errors of the expected age-specific death rates

over ages and years, using the Delta method (Agresti 2002), we derive an estimation
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of the standard error of p̂, which is

σ̂(p̂) ≡ exp(ŷ)

(1 + exp(ŷ))2
σ(ŷ).

For observed 2000 and predicted 2010, Figure 6 presents the values of σ̂(p̂) for all

ages and the zoomed curves for ages under 50. For a fixed age, the standard error

increases monotonically over the years, which is due to the overwhelmingly large

sample size in 2000 compared to that in the following years. The standard error is

not monotonic over ages. In general, the errors are small for ages under 70 except

for age 0.5, moderately large for ages 70-85 and dramatically large for ages over 85.

The magnitude of the errors reflects the real situation as shown in Figure 4 - the poor

quality of the data for ages over 90 and under one-year old.

5. Conclusions and Discussions

There have been efforts to improve the Lee-Carter model. In the original Lee-Carter

model, m(x, t) is known, and the goal is to find a set of solutions for a(x), b(x),

and k(t) that minimizes {ln[m(x, t)]− a(x)− b(x)k(t)}2, which is the ordinary least

square (OLS) method. Since the solutions for a(x), b(x) and k(t) are not unique,

under different restrictions, several variants and extensions are proposed, see Booth

(2006) for a comparison of the methods. The main drawback of the OLS method is

the violation of the homoscedasticity in the error term.

Under Poisson distribution assumption for the number of death, d(x, t) ∼ Poisson

(n(x, t) exp[a(x) + b(x)k(t)]), the Maximum Likelihood Estimation (MLE) method

is used to estimate the unknown parameters (Brouhns et al. 2002; Renshaw et al.

2003). The MLE method is indeed an improvement compared to the OLS method.
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However, the Poisson assumption is usually too strong in practice; over-dispersion,

an apparent violation of the fact that a Poisson distribution should have identical

mean and variance, usually appears in real data. As a remedy, the negative binomial

version of the Lee-Carter model has been proposed by Delwarde (2007).

Under binomial distribution assumption for the number of death, d(x, t) ∼ Bin

(n(x, t), p(x, t)), Wang and Lu (2005) proposed a MLE method to estimate the un-

known parameters in the Lee-Carter model. Write ax ≡ a(x), bx ≡ b(x) and kt ≡ k(t),

the likelihood function for the observations is

L(ax, bx, kt) =
∏
x,t

(
n(x, t)

d(x, t)

)
p(x, t)d(x,t)(1− p(x, t))n(x,t)−d(x,t),

where p(x, t) = exp(ax + bxkt). Unlike the OLS method where the size of the surveys

does not affect the value of {ln[m(x, t)] − a(x) − b(x)k(t)}2, in the MLE method,

a large n(x, t) plays a large role in estimating the unknown parameters ax, bx, and

kt. For the mortality data in China, using the method, we can obtain the estimated

â0, â1, ..., â100, b̂0, b̂1, ..., b̂100 and k̂2000, ..., k̂2008, totally 211 parameters for each gender.

The estimated mortality rate p̂(x, t) = exp(âx + b̂xk̂t) is not smooth over x or t.

In this paper, also under the binomial assumption, d(x, t) ∼ Bin(n(x, t), p(x, t)),

relation p(x, t) = exp(ax + bxkt)/(1 + exp(ax + bxkt)) is assumed. We assume kt = t,

which is usually adequate, especially for short base period data. For a fixed set of

knots Ωm and a fixed scenario of the restrictions at the tails, ax and bx are approxi-

mated by two linearized functions fΩm(x) and gΩm(x), respectively, and the modified

Lee-Carter model is simplified into a GLM with logit link, i.e., a logistic regression

model. All the nine scenarios and all possible integer knots form a collection of the

candidate models, from which we choose a final best model to reflect the real curve

more accurately. In theory, we can use different sets of knots for a(x) and b(x), yet the
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search for the optimal integer knots is extremely time consuming. In fact, even with

use of the same set of knots, the search among all possible integer knots is already

computer intensive when the number of knots is large.

In the new model, the years and ages with large sample sizes contribute large

weights in estimating the unknown parameters in the model and small sample sizes

contribute small weights (see Figures 2-4). Also, while applying the new method, we

do not have to be concerned with scarce data or missing values for certain ages or

years. The missing data do not affect the construction of the likelihood function.

The optimal knots in the final models, (6, 15, 18, 29) for males and (6, 8, 23, 26) for

females, reflect the accident hump during their early twenties. The hump was also

observed in other country’s mortality data. Kostaki (1992) proposed a nine-parameter

version of the Heligman-Pollard formula (Heligman and Pollard 1980) to depict the

hump and showed the effectiveness of the formula in analyzing empirical mortality

data of five European countries. Note that the Heligman-Pollard model is continuous

over ages, and is one of commonly used models in describing the age-specific mortality

for a fixed year, see Hartmann (1987) and Keilman et al. (2002).

Currie et al. (2004) proposed the use of P-splines along with the GLMwith Poisson

errors to impose smoothness on the Lee-Carter model. Unfortunately over-dispersion

has appeared in both of the two illustration data sets. Hyndman and Ullah (2007)

also proposed a smoothing method and provided a function “smooth.demogdata” in

the R package, “demography”. Using the “smooth.demogdata”, the mortality data in

China (2000-2008) are analyzed. Figure 7 shows the observed and fitted death rates

in log scale for years 2000, 2005 and 2008. The observed and fitted death rates do fit

each other well. Yet, the fitted curves are smooth for ages but not for years.

Using the new method proposed in this paper, the expected death rate estimated

from the model is smooth not only over ages but also over years, which make the
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prediction over years feasible. As exhibited in the example, the new model is capable

of revealing the important information contained in the data. We have not found

any literature reporting the same results that we draw from Figure 4, i.e., death rate

declines over the years for people of all ages, except for males between ages 13 and

36. The results may reflect the fact that for males 13-36 the major cause of death is

accidental, and the accidental death rates cannot be reduced by medical achievements.

The finding can be of great value in insurance, public safety and population studies.

Yet the phenomenon cannot be revealed by using the Lee-Carter model (see Figure 1)

or the model proposed by Hyndman and Ullah (2007) (see Figure 7).

Note that since the China Population Statistics Yearbooks (2001-2009) provide

average number and the number who died during the one-year period for each of the

age groups, we modeled the central rate in the analysis. Caution should be exercised,

as the central death rates in other data may exceed one for the age groups with

more than two thirds of people dead within the year. We would rather model death

rate instead of central death rate if the numbers at the beginning of a year and the

number of deaths during the year are both available. The new model can also be

applied to analyze other periodically collected age-specific data, such as age-specific

fertility data and age-specific marital status data.

Appendix A

Under the assumptions of continuous first and second derivatives at each of the

knots, we have 3×m equations

di+1 = ai(xi+1 − xi)
3 + bi(xi+1 − xi)

2 + ci(xi+1 − xi) + di,

ci+1 = 3ai(xi+1 − xi)
2 + 2bi(xi+1 − xi) + ci,

bi+1 = 3ai(xi+1 − xi) + bi,
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Based on these equations, we have

fm(x) = am(x− xm)
3 + bm(x− xm)

2 + cm(x− xm) + dm

= am(x− xm)
3 − am−1(x− xm)

3 + am−1(x− xm−1)
3

−am−2(x− xm−1)
3 + am−2(x− xm−2)

3 + ...− a1(x− x2)
3 + a1(x− x1)

3

−a0(x− x1)
3 + a0(x− x0)

3 + b0(x− x0)
2 + c0(x− x0) + d0

= βm(x− xm)
3 + βm−1(x− xm−1)

3 + βm−2(x− xm−2)
3 + ...+ β1(x− x1)

3

+a0(x− x0)
3 + b0(x− x0)

2 + c0(x− x0) + d0

where ai − ai−1 = βi, i = 1, ...,m, for xm ≤ x ≤ xm+1. In another format, we have

fm(x)I(xm≤x≤xm+1) = βm(x− xm)
3
+ + βm−1(x− xm−1)

3
+ + ...+ β1(x− x1)

3
+ +

a0(x− x0)
3
+ + b0(x− x0)

2
+ + c0(x− x0)+ + d0

where (x− xj)
i
+ is (x− xj)

i for x ≥ xj and 0 for x < xj. That is, the piecewise cubic

spline function (1) can be written as

fΩm(x) = f0(x)I(x0≤x≤x1) + ...+ fm(x)I(xm≤x≤xm+1)

= β∗
00 + β∗

01Z01(x) + β∗
02Z02(x) + β∗

0Z0(x) +
m∑
i=1

{β∗
i Zi(x)}

where

Z0i(x) = (x− x0)
i
+, i = 1, 2; Zi(x) = (x− xi)

3
+, i = 0, 1, ...,m.

Under the restriction of quadratic above the last knot, am = 0, i.e., βm = −(βm−1+

16



...+ β1 + a0), we have

fm(x)I(xm≤x≤xm+1) =
m−1∑
i=1

βi((x− xi)
3
+ − (x− xm)

3
+) + a0((x− x0)

3
+ − (x− xm)

3
+)

+b0(x− x0)
2
+ + c0(x− x0)+ + d0,

and the corresponding Z functions of x become (4).

Under the restrictions of linear above the last knot, i.e., am = 0 and bm = 0, use

relations ai − ai−1 = βi, for i = 1, ...,m− 1, we have

am−1 = −bm−1/(3(xm − xm−1)

= −(3am−2(xm−1 − xm−2) + ...+ 3a1(x2 − x1) + b1)/(3(xm − xm−1))

= −3βm−2(xm−1 − xm−2) + ...+ 3β1(xm−1 − x1) + 3a0(xm−1 − x0) + b0
3(xm − xm−1)

and,

βm−1 = am−1 − a0 − (β1 + β2 + ...+ βm−2)

= −3βm−2(xm − xm−2) + ...+ 3β1(xm − x1) + 3a0(xm − x0) + b0
3(xm − xm−1)

.

The corresponding Z functions of x become (5).
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Table 1: Optimal integer knots and the corresponding residual deviances for various
models, M1-M16 for males and F1-F16 for females

optimal tails Z(x) num of Residual
model integer knots (left,right) in (9) param. deviance
M1 (5,16,19,26,91,93,94) lin,lin 1/x 15 7107
M2 (5,17,19,24,80,95) lin,quad 1/x 15 7226
M3 (5,17,19,24,80) lin,cubic 1/x 15 7230
M4 (6,15,18,29) lin,cubic 1/x 13 10006 (

√
)

M5 (6,15,18,29,100) lin,quad 1/x 13 10006
M6 (6,15,18,29,99,100) lin,lin 1/x 13 10007
M7 (18,19,28) quad,cubic 1/x 13 10441
M8 (18,19,28,100) quad,quad 1/x 13 10441
M9 (18,19,28,99,100) quad,lin 1/x 13 10441
M10 (22,34) cubic,cubic 1/x 13 11541
M11 (22,34,100) cubic,quad 1/x 13 11541
M12 (22,34,99,100) cubic,lin 1/x 13 11541
M13 (12,14,18,29) lin,cubic 1/

√
x 13 10681

M14 (18,19,31) quad,cubic 1/
√
x 13 11758

M15 (20,21,26,79) lin,cubic log(x) 13 12004
M16 (17,18,39) quad,cubic log(x) 13 14711
F1 (6,8,21,31,44) lin,cubic 1/x 15 5860
F2 (6,8,21,31,44,100) lin,quad 1/x 15 5860
F3 (6,8,21,31,44,99,100) lin,lin 1/x 15 5860
F4 (6,8,23,26) lin,cubic 1/x 13 5932 (

√
)

F5 (6,8,23,26,100) lin,quad 1/x 13 5932
F6 (6,8,23,26,99,100) lin,lin 1/x 13 5932
F7 (16,20,27) quad,cubic 1/x 13 6135
F8 (16,20,27,100) quad,quad 1/x 13 6135
F9 (16,20,27,99,100) quad,lin 1/x 13 6135
F10 (25,27) cubic,cubic 1/x 13 6615
F11 (25,27,100) cubic,quad 1/x 13 6615
F12 (25,27,99,100) cubic,lin 1/x 13 6615
F13 (9,10,22,27) lin,cubic 1/

√
x 13 6535

F14 (18,21,27 ) quad,cubic 1/
√
x 13 6945

F15 (14,16,20,29) lin,cubic log(x) 13 9002
F16 (20,23,28) quad,cubic log(x) 13 9045
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Table 2: Parameter estimates and P-values from four models, M1 and M4 for males
and F1 and F4 for females

model M4 for males model F4 for females
functions Estimate P-value functions Estimate P-value

(Intercept) 269 <.00001 (Intercept) 316 <.00001
1/x 1.61 <.00001 1/x 1.72 <.00001

Z01 = x+ -24.1 <.00001 Z01 = x+ -25.8 <.00001
Z1 = (x− 6)3+ 0.091 <.00001 Z1 = (x− 6)3+ 0.397 <.00001
Z2 = (x− 15)3+ -0.424 <.00001 Z2 = (x− 8)3+ -0.470 <.00001
Z3 = (x− 18)3+ 0.354 <.00001 Z3 = (x− 23)3+ 0.179 0.0021
Z4 = (x− 29)3+ -0.023 0.0072 Z4 = (x− 26)3+ -0.107 0.0090

t -0.138 <.00001 t -0.162 <.00001
tZ01 = tx+ 0.012 <.00001 tZ01 = tx+ 0.0128 <.00001

tZ1 = t(x− 6)3+ -0.000045 <.00001 tZ1 = t(x− 6)3+ -0.000197 <.00001
tZ2 = t(x− 15)3+ 0.00021 <.00001 tZ2 = t(x− 8)3+ 0.000233 <.00001
tZ3 = t(x− 18)3+ -0.000175 <.00001 tZ3 = t(x− 23)3+ -0.000089 0.0024
tZ4 = t(x− 29)3+ 0.000011 0.0083 tZ4 = t(x− 26)3+ 0.000053 0.0100

model M1 for males model F1 for females
functions Estimate P-value functions Estimate P-value

(Intercept) 268 <.00001 (Intercept) 318 <.00001
1/x 1.61 <.00001 1/x 1.72 <.00001

Z01 = x+ -23.8 <.00001 Z01 = x+ -27.3 <.00001
Z1 0.062 <.00001 Z1 = (x− 6)3+ 0.487 <.00001
Z2 -0.349 0.00016 Z2 = (x− 8)3+ -0.588 <.00001
Z3 0.318 0.00183 Z3 = (x− 21)3+ 0.147 0.00009
Z4 -0.0318 0.11593 Z4 = (x− 31)3+ -0.0567 0.0057
Z5 -2.68 <.00001 Z5 = (x− 44)3+ 0.0106 0.0353
t -0.137 <.00001 t -0.162 <.00001

tZ01 = tx+ 0.0118 <.00001 tZ01 = tx+ 0.0136 <.00001
tZ1 -0.000031 <.00001 tZ1 = t(x− 6)3+ -0.00024 <.00001
tZ2 0.00017 0.00020 tZ2 = t(x− 8)3+ 0.00029 <.00001
tZ3 -0.000156 0.00217 tZ3 = t(x− 21)3+ -0.000073 0.0001
tZ4 0.0000154 0.12726 tZ4 = t(x− 31)3+ 0.000028 0.0061
tZ5 0.00134 <.00001 tZ5 = t(x− 44)3+ -0.0000053 0.0357

where Z1 = (x− 5)3+ − 89(x− 93)3+ + 88(x− 94)3+
Z2 = (x− 16)3+ − 78(x− 93)3+ + 77(x− 94)3+
Z3 = (x− 19)3+ − 75(x− 93)3+ + 74(x− 94)3+
Z4 = (x− 26)3+ − 68(x− 93)3+ + 67(x− 94)3+

Z5 = (x− 91)3+ − 3(x− 93)3+ + 2(x− 94)3+
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Figure 1: Observed and predicted death rates (for 2009 and 2010) in log scale for
males using the Lee-Carter model.
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Figure 2: Observed and fitted death rates in logit scale using model M4 for males.
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Figure 3: Observed and fitted death rates in logit scale using model F4 for females.
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Figure 4: Observed and fitted death rates using models M4 and F4 for males and
females respectively.
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Figure 5: Fitted and predicted death rates with 95%CIs for males and females using
models M4 and F4, respectively.
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Figure 6: Standard errors of fitted and predicted death rates for males and females
using models M4 and F4, respectively.
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Figure 7: Observed and fitted death rates in log scale for males using a modified
Lee-Carter model proposed by Hyndman and Ullah(2006).
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